
COT 4600 Operating Systems Fall 2009

Dan C. Marinescu
Office: HEC 439 B
Office hours: Tu-Th 3:00-4:00 PM

222

Lecture 10

Last time:
Modular Sharing
Metadata and Name Overloading
Addresses Case study: the Unix file system

Today:
User-friendly names; Lifetime of names
Case study: URL
Soft modularity
Hard modularity

Next Time:
Client/Service organization

User-friendly names

Are always strings of characters.
Requirements:

the need for a name to be unique
easy to remember
use of lower and upper case letters more common today
Multics first system to use both upper and lower case characters.

Case sensitive versus case-preserving names
http://Jupiter.Athena.MIT.edu is different from http://jupiter.athena.mit.edu

Icons acting as a name

http://jupiter.athena.mit.edu/

Relative lifetime of names
The cardinality of the name-space can be limited (the total number of
characters is limited, the alphabet is restricted, etc).

Names permanently bound to objects; e.g., the registers of a processor
Names have a limited life-time and must be reused; dynamic IP addresses are
leased for limited amount of time

In many cases the cardinality of the name-space is practically unlimited
and arbitrary names can be choosen.
The binding of the name and the object

Long-lived the phone number, the Email address
Short-lived the label on your cup of coffee at Starbucks
May be renewed the binding of the system calls (which are long-lived) issued by
an application program to the operating system (alos a long-lived object) are
renewed every time the program runs

Dangling references names that no longer correspond to existing
objects; e.g., old telephone numbers.
Orphan object an object that outlives its name. How to garbage
collect the space used by the object?

Lecture 10 4

Case study: URLs
Hyperlink

a reference in a document to an external or internal piece of information
makes a logical connection between two places in the same or different documents
to browse through web pages some text in the current document is highlighted so
that when clicked, the browser automatically displays another page or changes the
current page to show the referenced content.
the basic building block of hypertexts.

The Web a file transfer protocol using
The Hypertext Markup language (HTML) to describe the contents
The Hypertext Transfer Protocol (HTTP) for communication.

Universal Resource Locator (URL)
A name in the URL name space
Absolute URL an URL which carries its own context.
Example :

http://www.cs.ucf.edu/~dcm/Teaching/OperatingSystemsCOT4600/ClassIndex.html
Relative URL an URL which does not carry its own context. The context is
derived from the page where this relative URL occurs.
Example : <a href =“Projects..htm”? Link to projects.

Lecture 10 5

http://www.cs.ucf.edu/~dcm/Teaching/OperatingSystemsCOT4600/ClassIndex.html

The name-mapping algorithm for an URL
Example:
http://www.cs.ucf.edu/~dcm/Teaching/OperatingSystemsCOT4600/ClassIndex.html

The string before “:” (colon) identifies the protocol used, e.g., “http”.
The string between “//” and the following “/” the host name passed to
DNS (Domain Name Server) to resolve (e.g., www.cs.ucf.edu)
The browser uses the protocol (in our case http) to open the connection
with the http-server on the host with the IP address returned by DNS and
to locate the file
/~dcm/Teaching/OperatingSystemsCOT4600/ClassIndex.html
If the file is found then the http-server send the file

Lecture 10 6

http://www.cs.ucf.edu/~dcm/Teaching/OperatingSystemsCOT4600/ClassIndex.html
http://www.cs.ucf.edu/
http://www.cs.ucf.edu/~dcm/Teaching/OperatingSystemsCOT4600/ClassIndex.html

URL case sensitivity
The host name part of the URL (the one sent to DNS) is case sensitive.
The part of the URL used to locate the object on the host (the path
name)

Depends upon the protocol used
HTTP says “this string is NOT a Unix file name” but does not say anything about case
sensitivity
Case sensitivity for HTTP depends on the file system of the server

On a standard Unix system the path name is case sensitive
On a MAC the path name is case-preserving

Lecture 10 7

Alternatives to URL

Permanent URL (PURL)
Universal Resource Name (URN) The URNs are part of a larger
Internet information architecture which is composed of

URNs used for identification,
URCs for including meta-information.
URLs for locating or finding resources.

Digital Object Identifier (DOJ) includes metadata; diverse
granularity

Lecture 10 8

Soft modularity

Modularity is critical but the techniques discussed so far do not limit
common errors.
Soft modularity divide a program in procedures that call each other.

Hard to debug; if one of the modules has an infinite loop, a call never
returns
The caller and the callee are in the same address space and may misuse
the stack.
Naming conflicts and wrong context specification.

Example:
procedure MEASURE (func)

start_time GET_TIME(SECONDS)
funct()
end_time GET_TIME(SECONDS)

return (end_time-start_time)

procedure GET_TIME (units)
time CLOCK
time CONVERT_TO_UNITS(time,units)

return time

Lecture 10 10

Machine code for MEASURE
100 ST R1,SP //save content of R1 on the stack
104 ADD 4, SP //increment stack pointer
108 ST R2, SP //save content of R2 on the stack
112 ADD 4, SP //increment stack pointer
116 LA R1, SECONDS //load address of the argument in R1
120 ST R1, SP // store address of the argument on the stack
124 ADD 4, SP // increment stack pointer
128 L A R1,148 // load return address in R1
132 ST R1, SP // store return address on the stack
136 ADD 4, SP //adjust top stack pointer
140 L A R1, 200 // load address of GET_TIME in R1
144 JMP R1 //transfer control to GET_TIME
148 S 4,SP // decrement stack pointer
152 L R2, SP // restore the contents of R2
156 S 4,SP // decrement stack pointer
160 L R1,SP // restore the contents of R1
164 S 4,SP // decrement stack pointer
168 ST R0, start // store result passed by GET_TIME in Ro into start

Lecture 10 11

Machine code for GET_TIME

200 L R1,SP //load address of the stack pointer in R1
204 S R1,8 //increment stack pointer
208 L R2, R1 //load address of the argument in R2
212 code for the body of GET_TIME
216 code for the body of GET_TIME
220 L R0, time // load in R0 the result
224 L R1,SP // reload in R1 address of the stack pointer
228 S R1,4 // decrement the stack pointer
231 L PC,R1 // load return address from stack into PC

Lecture 10 12

Procedure call convention
1. Caller

1. saves on the stack (after each operation it adjusts the SP)
1. registers
2. arguments
3. return address

2. transfers control to the calle (jump to its starting address)
2. Calee

1. loads from the stack the arguments
2. carries out the desired calculation and load the results in a register (R0)
3. transfers control back to the caller loads in the PC the return address

to the caller
3. Caller

1. adjusts the stack
2. restores its registers

Soft modularity allows errors to propagate
Conventions between caller and callee regarding register usage:

The caller passes the argument (the address of the variable SECONDS)
in register R1
The callee returns the value of the result in register R0
The callee uses register R2 so the caller must save it before transferring
control to the callee

Potential problems caused by soft modularity
The callee is expected to leave the stack pointer as it was set by the
caller. But the callee may mess up…
The transfer of control the callee may return to the wrong address
The caller may attempt to get the result from the wrong register
The callee may use registers that the caller has not saved on the stack
before transferring control to the callee
An error of the callee will affect the caller
If either the caller or the callee agree to communicate using global
variables then changing of these variable will affect other modules

Strongly typed languages help enforce modularity
Provide:

Strong guarantees about the run-time behavior of a program before program
execution, whether provided by static analysis, the execution semantics of the
language or another mechanism.
Type safety; that is, at compile or run time, the rejection of operations or function calls
which attempt to disregard data types.
The guarantee that a well-defined error or exceptional behavior occurs as soon as a
type-matching failure happens at runtime.
The compiler ensures that operations only occur on operand types that are valid for
the operation.
The type of a given data object does not vary over that object's lifetime. For example,
class instances may not have their class altered.
The absence of ways to evade the type system. Such evasions are possible in
languages that allow programmer access to the underlying representation of values,
i.e., their bit-pattern.
A programming language is strongly typed if type conversions are allowed only when
an explicit notation, often called a cast, is used to indicate the desire of converting one
type to another.
Disallowing any kind of type conversion. Values of one type cannot be converted to
another type, explicitly or implicitly.

Soft modularity may be affected by other factors

Different modules are written in different languages
Errors in the run-time support
Errors in the compiler

Enforced modularity

Enforced modularity force modules to interact only by sending
messages.
The client/service organization makes it more difficult:

For programmers to violate modularity the only way two modules
interact is by means of messages; naming within one module are not
visible outside the module.
Errors to propagate clients and services are independent modules
and may fail separately.
Attack the system if messages are checked carefully the attaker has
a very hard time

Other advantages:
The system is more robust; the servers are stateless.
Resources can be managed more effectively.

	COT 4600 Operating Systems Fall 2009
	Lecture 10
	User-friendly names
	Relative lifetime of names
	Case study: URLs
	The name-mapping algorithm for an URL
	URL case sensitivity
	Alternatives to URL
	Soft modularity
	Example:
	Machine code for MEASURE
	Machine code for GET_TIME
	Procedure call convention
	Soft modularity allows errors to propagate
	Strongly typed languages help enforce modularity
	Soft modularity may be affected by other factors
	Enforced modularity

