SP First ERRATA. These are mostly typos, but there are a few crucial mistakes in formulas. Underline is not used in the book, so I've used it to denote changes.
JHMcClellan, February 13, 2010

1. page 10^{*}, Figure $2-4$, last line of text in figure: $\quad \Longrightarrow \underline{x}=r \cos (\theta)$
2. page 13^{*}, righthand column, last line of text, change 3 to 2 ,
... negative slope of $-\frac{2}{3}$ for $\frac{1}{2}<t \leq \underline{2}$. Now ...
3. page 34*, Figure 2-21, The diagram of the original figure does not correspond to the equations given in the problem. The general formula for the distance off the reflector, d_{2}, is $d_{2}=d_{r}+\sqrt{\left(x-d_{r}\right)^{2}+d_{t}^{2}}$. The figure should be replaced with the one below:

4. page 41, (bottom left), The CDROM citation should read:

LAB: \#3 AM and FM Sinusoidal Signals
5. page $44^{*}, 2$ nd line, left hand column, change the sentence to read:

Since $T_{0}=1 / f_{0}$ is the smallest possible period, it is also the fundamental period.
6. page 49, equation (3.25) Orthogonality Property
7. page 53 , (2 nd line of equations for a_{k}),
denominator should be: $-j\left(2 \pi / T_{0}\right) k$, so we would have

$$
=\left(\frac{1}{T_{0}}\right) \frac{e^{-j\left(2 \pi / T_{0}\right) k\left(\frac{1}{2} T_{0}\right)}-e^{-j\left(2 \pi / T_{0}\right) k(0)}}{-j\left(2 \pi / T_{0}\right) k}
$$

8. page 56 , 2nd line of equation(3.37),
exponent in exponential needs changing, should be: $\underline{e^{-j\left(2 \pi / T_{0}\right) k t}}$. The entire line should read:

$$
+\frac{1}{T_{0}} \int_{\frac{1}{2} T_{0}}^{T_{0}}\left(2\left(T_{0}-t\right) / T_{0}\right) e^{-j\left(2 \pi / T_{0}\right) k t} d t
$$

9. page 63 , righthand column, line 18 , (insert a space) ...signals, such as a Touch-Tone phone.
10. page 78 , righthand column, 7 lines below equation (4.12) should read: ...arbitrary, but the ideal D-to-C converter always selects...
11. page 83, The CDROM citation should read:

LAB: \#3 Chirp Synthesis from Chapter 3
12. page 91, The CDROM citation should read:

DEMO: Reconstruction Movies
13. page 111, The CDROM citation should read: LAB: \#6 Digital Images: A / D and D / A
14. page 123^{*}, The convolution table has a notation problem. $h_{1}[n]$ and $h_{2}[n]$ are swapped and we should have written $h_{2}[k] h_{1}[n-k]$. Also, in the equation above the table, we should write: $y[n]=h_{2}[n] * h_{1}[n]$.

n	$n<0$	0	1	2	3	4	5	6	$n>6$
$h_{1}[n]$	0	1	1	1	1	0	0	0	0
$h_{2}[n]$	0	0	1	1	1				
$h_{2}[0] h_{1}[n]$	0	0	0	0	0	0	0	0	0
$h_{2}[1] h_{1}[n-1]$	0	0	1	1	1	1	0	0	0
$h_{2}[2] h_{1}[n-2]$	0	0	0	1	1	1	1	0	0
$h_{2}[3] h_{1}[n-3]$	0	0	0	0	1	1	1	1	0
$h[n]$	0	0	1	2	3	3	2	1	0

15. page 126, The CDROM citation should read:

LAB: \#7 Sampling, Convolution, and FIR Filtering
16. page 132, 3rd line of Example $6-2$, Missing $-\pi / 3$ which should be colored.
\ldots and $\angle H\left(e^{j \pi / 3}\right)=-\pi / 3$.
17. page 133 , righthand column, 2 nd line, algebraic steps in (6.6) show that $y[n]$ can finally be expressed as a cosine signal.
18. page 153 , righthand column, middle, $d s t y$ in the middle of the equation should be deleted.

$$
\begin{aligned}
& H\left(e^{j 2 \pi(250) / 1000}\right) \\
& \quad=\frac{\sin (\pi(250)(11) / 1000)}{\sin (\pi(250) / 1000)} e^{-j 2 \pi(250)(5) / 1000} \\
& \quad=0.0909 e^{-j \pi / 2}
\end{aligned}
$$

19. page 156 , (bottom right), The CDROM citation should read:

LAB: \#9 Encoding and Decoding Touch-Tones
20. page 174 , Exercise 7.6 , equation for $w[n]$ should have minus sign instead of plus: $w[n]=x[n]-x[n-1]$
21. page 176, The CDROM citation should read:

DEMO: Three Domains - FIR
22. page 181, first paragraph of Section 7-7 should read:

Now we can exploit our new knowledge to design filters with desirable characteristics. In this section, we will look at a special class of bandpass filters (BPFs) that are all close relatives of the running-sum filter.
23. page 192, Figure P-7.6(b), output (above the arrow on the far right) should be $w[n]$, not $y[n]$.
24. page 195, in Problem P-7.17, part (a). The exponent has two extra parentheses that should be deleted; the exponent should be:

$$
H\left(e^{j \hat{\omega}}\right)=\left[2 b_{0} \sin (2 \hat{\omega})+2 b_{1} \sin (\hat{\omega})\right] e^{j \pi / 2-j \hat{\omega} 2}
$$

25. page 219*, Example 8-11 (caption), Example 8-11: Long Division
26. page 241^{*}, in Problems P-8.13 and P-8.14, \mathcal{S}_{6} is wrong. The upper limit on the summation needs to be 3 , not 2 ; otherwise, no match is possible.

$$
\mathcal{S}_{6}: y[n]=\sum_{k=0}^{3} x[n-k]
$$

27. page 242, Problem P-8.17, ...five possible impulse responses (J-N).
28. page 250^{*}, Figure 9-5 (caption), Scaled unit-impulse signal is symbolized...
29. page 264, Figure 9-13(a), Label on y-axis contains a "gamma," should be: $x(\tau)$
30. page 264, Figure 9 -13(b), Label on y-axis appears to have a light gray vertical bar after the equals sign. This is only visible in the PDF file. Should be: $g(\tau) \equiv x(-\tau)$
31. page 295, The CDROM citation should read:

LAB: \#13 Numerical Evaluation of Fourier Series
32. page 296, line 1 beneath Fig. 10-6 should read:
which we can rewrite as $y(t)=\ldots$
33. page 302, The CDROM citation should read:

LAB: \#15 Fourier Series (Ch. 12)
34. page 312*, The following derivation should be written on two lines instead of three; otherwise, the equals sign is ambiguous.

$$
\begin{aligned}
|X(j \omega)| & =\left|\int_{-\infty}^{\infty} x(t) e^{-j \omega t} d t\right| \\
& \leq \int_{-\infty}^{\infty}\left|x(t) e^{-j \omega t}\right| d t=\int_{-\infty}^{\infty}|x(t)| d t
\end{aligned}
$$

35. page 319^{*}, line 8 , righthand column, (insert comma) necessary condition, for having a Fourier transform.
36. page 326 , line 11 , righthand column, ...we showed in (10.3)...
37. page 329*, equation in righthand column is missing T^{2},

$$
y(t)=x(t) * h(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \frac{T^{2}}{\left(\frac{\sin (\omega T / 2)}{(\omega T / 2)}\right)^{2} e^{j \omega t} d \omega ~}
$$

or T could be removed from the denominator and it could be written as:

$$
y(t)=x(t) * h(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left(\frac{\sin (\omega T / 2)}{\underline{(\omega / 2)}}\right)^{2} e^{j \omega t} d \omega
$$

38. page 349^{*}, Figure P-12.4(b), input signal to first block should be $x(t)$, instead of $x[n]$
39. page 351 , line 1 , righthand column, remove the words "filtersFrequency selective" so that it reads:
... frequency selective filters. In this section,...
40. page 354^{*}, Figure $12-9,2$ nd line of caption, (subscript not italic)
...to give the output signal $y_{l \mathrm{p}}(t)$.
41. page 355 , The CDROM citation should read:

LAB: \#14 Design with Fourier Series
42. page 364, Figure 12-20, misspelled word inside the first block: Half-Wave Rectifier
43. page 368^{*}, equation (12.40), second line is missing n; it should be:

$$
=x(t) \sum_{n=-\infty}^{\infty} \delta\left(t-\underline{n} T_{s}\right)
$$

44. page 369^{*}, Example $\mathbf{1 2 - 5}$, first equation is missing a k inside the δ function:

$$
P(j \omega)=\sum_{k=-\infty}^{\infty}\left(\frac{2 \pi}{T_{s}}\right) \delta\left(\omega-\underline{k} \omega_{s}\right)
$$

45. page 379 , Figure $12-35(\mathrm{~d})$, the rightmost label $2 \pi \gamma$ contains an extraneous γ; should be 2π
46. page 381^{*}, Problem P-12.2 has $\omega_{c o 1}$ and $\omega_{c o 2}$ switched, because the natural assumption is that $\omega_{c o 1}$ is the lower passband cutoff frequency, while $\omega_{c o 2}$ is the upper one. Thus, the natural assumption is that $\omega_{c o 1}<\omega_{c o 2}$. To correct this equation (12.76) should be changed to:

$$
h_{\mathrm{bp}}(t)=\frac{\sin \left(\omega_{\text {co2 }} t\right)}{\pi t}-\frac{\sin \left(\omega_{\text {co1 }} t\right)}{\pi t}
$$

47. page 383^{*}, Problem \mathbf{P}-12.7 part (c), change minus sign to plus sign:

$$
w(t)=\frac{1}{2} x_{1}(t)\left[1+\cos \left(2 \omega_{c} t\right)\right] \ldots
$$

48. page 383 , Figure $\mathrm{P}-12.8$, inside block (bad spacing)

LTI System

49. page 384 , Figure $\mathrm{P}-12.9$, inside block (bad spacing)

LTI System
50. page 385, Figure P-12.11(a), change summation index to k in the definition of $p(t)$:

$$
p(t)=\sum_{\underline{k}=-\infty}^{\infty} a_{k} e^{j k \omega_{p} t}
$$

51. page 386, Problem P-12.13, change π to π / T_{s} in the definition of $H_{r}(j \omega)$:

$$
H_{r}(j \omega)= \begin{cases}T_{s} & |\omega| \leq \pi / T_{s} \\ 0 & |\omega|>\pi / T_{s}\end{cases}
$$

52. page 387, Figure P-12.15(b), change 4 to 1 in the definition of the passband of $H\left(e^{j \hat{\omega}}\right)$.
53. page 392 , before equation (13.8), lefthand column, (insert space)
......equation (12.61) on p. 376, that the DTFT of...
54. page 410, top, lefthand column, section title should be:

13-8.2 Spectrograms in MATLAB
55. page 413^{*}, Figure 13-20, Label on x-axis should be (sec) not (msec):

Time (sec)
56. page 414^{*}, Figure 13-22, Label on x-axis should be (sec) not (msec):

Time (sec)
57. page 414^{*}, Figure 13-23, Label on x-axis should be (sec) not (msec):

Time (sec)
58. page 438*, Figure A-13 (caption),

For the vectors shown, $\left|z_{1}\right|>1$ and $\left|z_{3}\right|<1$.
59. page 449 , lefthand column, line 16 , in MatLAB code for for function foo: Missing a comment sign (\%) sign before the $\mathrm{x}=$ input vector statement.
응 $\mathrm{x}=$ input vector
60. page 460, top line, lefthand column,

Use the built-in MATLAB editor, or an external one...

Optional:

1. page 26, The suggested change in wording was not made:

Change LAB: \#2, Adding Sinusoids and Complex Amplitudes
to LAB: \#2 Introduction to Complex Exponentials.
Note: this change was made correctly on page 31.
2. page 46, The CDROM citation should read:

DEMO: Spectrograms: Simple Sounds: Square Wave
3. page 68, Problem P-3.15 (b), top of the right hand column.

It would make a better problem to define $y(t)$ as $2 x\left(t-T_{0} / 4\right)$ because then the shifted square wave has its jumps at $t=0$ and $t=T_{0} / 2$ like the example worked out in Section 3-6.1.
4. page 381, in Problems P-12.2 and P-12.3 it should be stated that $\omega_{c o 1}<\omega_{c o 2}$.
5. page 416 , The CDROM citation should read:

DEMO: Ch 3, Spectrograms

CD-ROM Errata:

1. Exercise 2.2, p. 14 in the text: "Derive the equations for the shifted signal $x_{2}(t)=s(t+1)$." seems to point to a similar but different shifted triangular-signal on the SPFirst CD and also on the website. Fig. 2-8(c) in the book shows the correct signal for $s(t+1)$, but the answer to Exercise 2.2, on CD and website, points to a .pdf file showing a different signal (base of 3-units instead of 2) with different slopes ($m=1$ and $m=-1 / 2$ instead of $m=2$ and $m=-2 / 3$) and having a different final equation when solving for $s(t+1)$.
2. Exercise 3.8 solution is wrong because the $k=3$ term was evaluated incorrectly. The last two lines should be:

$$
\begin{aligned}
x_{N}(t) & =\frac{1}{2}-\frac{2}{\pi} e^{j 50 \pi t}-\frac{2}{\pi} e^{-j 50 \pi t}-\frac{2}{\underline{3^{2} \pi}} e^{j 150 \pi t}-\frac{2}{\underline{3^{2} \pi}} e^{-j 150 \pi t} \\
& =\frac{1}{2}-\frac{4}{\pi} \cos (50 \pi t)-\frac{4}{\underline{9 \pi}} \cos (150 \pi t)
\end{aligned}
$$

3. Exercise 7.6 solution was not consistent with the printed version (1st and 2 nd printing) of the text. However, the error is with the text, so the solution is not changed.
