
1

COT 4600 Operating Systems Fall 2009

Dan C. Marinescu
Office: HEC 439 B
Office hours: Tu-Th 3:00-4:00 PM

2Lecture 7 22

Lecture 7

Last time:
2. Interpreters
3. Communication Links
Internet or what is behind the abstractions…

Today:
Naming in computing systems

Next Time
Case Study: Unix File System

Announcements:
- no office hours on Thursday, September 17.
- Phase 1 of the project is due on Thursday, September 17
- HW 2 is due on Thursday September 24.

3Lecture 7 3

Naming
The three abstractions (memory, interpreters, communication
links manipulate objects identified by name.
How could object A access object B:

Make a copy of object B and include it in A use by value
Safe there is a single copy of B
How to implement sharing of object B?

Pass to A the means to access B using its name use by reference
Not inherently safe both A and C may attempt to modify B at the same
time. Need some form of concurrency control.

4Lecture 7 4

Binding and indirection
Indirection decoupling objects from their physical
realization through names.
Names allow the system designer to:
1. organize the modules of a system and to define communication

patterns among them
2. defer for a later time

to create object B referred to by object A
select the specific object A wishes to use

Binding linking the object to names. Examples:
A compiler constructs

a table of variables and their relative address in the data section of
the memory map of the process
a list of unsatisfied external references

A linker binds the external references to modules from libraries

5Lecture 7 5

Generic naming model
Naming scheme strategy for naming. Consists of:

Name space the set of acceptable names; the alphabet used
to select the symbols from and the syntax rules.
Universe of values set of objects/values to be named
Name mapping algorithm resolves the names, establishes a
correspondence between a name and an object/value
Context the environment in which the model operates.

Example: searching for John Smith in the White Pages in Orlando
(one context) or in Tampa (another context).
Sometimes there is only one context universal name space; e.g.,
the SSNs.
Default context

6Lecture 7 6

Figure 2.10 from the textbook

7Lecture 7 7

Operations on names in the abstract model
Simple models: value RESOLVE (name, context)

The interpreter:
Determines the version of the RESOLVE (which naming scheme is used)
Identifies the context
Locates the object

Example: the processor
Complex models support:

creation of new bindings: status BIND(name, value, context)
deletion of old bindings: status UNBIND(name, value)
enumeration of name space: list ENUMERATE(context)
comparing names status: result COMPARE(name1,name2)

8Lecture 7 8

Name mapping

Name to value mapping
One-to-One the name identifies a single object
Many-to-One multiple names identify one objects (aliasing)
One-to-Many multiple objects have the same name even in the
same context.

Stable bindings the mapping never change. Examples:
Social Security Numbers
CustomerId for customer billing systems

9Lecture 7 9

Name-mapping algorithms
1. Table lookup

1. Phone book
2. Port numbers a port the end point of a network connection

2. Recursive lookup:
1. File systems – path names
2. Host names – DNS (Domain Name Server)
3. Names for Web objects - URL – (Universal Resource Locator)

3. Multiple lookup searching through multiple contexts
1. Libraries
2. Example: the classpath is the path that the Java runtime

environment searches for classes and other resource files

10Lecture 7 10

1. Table lookup

Figure 2.11 from the textbook

11Lecture 7 11

How to determine the context
Context references:

Default supplied by the name resolver
Constant built-in by the name resolver

Processor registers (hardwired)
Virtual memory (the page table register of an address space)

Variable supplied by the current environment
File name (the working directory)

Explicit supplied by the object requesting the name resolution
Per object

Looking up a name in the phone book
Per name each name is loaded with its own context reference
(qualified name).

URL
Host names used by DNS

12Lecture 7 12

Dynamic and multiple contexts
Context reference static/dynamic.

Example: the context of the “help” command is dynamic, it depends where you
are the time of the command.

A message is encapsulated (added a new header,) as flows down the
protocol stack:

Application layer (application header understood only in application context)
Transport layer (transport header understood only in the transport context)
Network layer (network header understood only in the network context)
Data link layer (data link header understood only in the data link context)

13Lecture 7 13

2. Recursive name resolution
Contexts are structured and a recursion is needed for name
resolution.
Root a special context reference - a universal name space
Path name name which includes an explicit reference to the
context in which the name is to be resolved.

Example: first paragraph of page 3 in part 4 of section 10 of chapter 1 of
book “Alice in Wonderland.”
The path name includes multiple components known to the user of the
name and to name solver
The least element of the path name must be an explicit context
reference

Absolute path name the recursion ends at the root context.
Relative path name path name that is resolved by looking up its
mot significant component of the path name

14Lecture 7 14

Example

AliceInWonderland.Chapter1.Section10.Part4.Page3.FirstParagraph
Most significant Least significant

15Lecture 7 15

3. Multiple lookup

Search path a list of contexts to be searched
Example: the classpath is the path that the Java runtime
environment searches for classes and other resource files

User-specfic search paths user-specific binding
The contexts can be in concentric layers. If the resolver
fails in a inner layer it moves automatically to the outer
layer.
Scope of a name the range of layers in which a name
is bound to the same object.

16Lecture 7 16

Comparing names
Questions

Are two names the same? easy to answer
Are two names referring to the same object (bound to the same
value)? harder; we need the contexts of the two names.
If the objects are memory cells are the contents of these cells the
same?

17Lecture 7 17

Name discovery
Two actors:

The exporter advertizes the existence of the name.
The prospective user searches for the proper advertisement.
Example: the creator of a math library advertizes the functions.

Methods
Well-known names
Broadcasting
Directed query
Broadcast query
Introduction
Physical randezvoue

18

Computer System Organization

Operating Systems (OS) software used to
Control the allocation of resources (hardware and software)
Support user applications
Sandwiched between the hardware layer and the application
layer

OS-bypass: the OS does not hide completely the
hardware from applications. It only hides dangerous
functions such as

I/O operations
Management function

Names modularization

Lecture 7 18

19Lecture 7 19

Figure 2.16 from the textbook

20

A. The hardware layer
Modules representing each of the three abstractions (memory,
interpreter, communication link) are interconnected by a bus.
The bus a broadcast communication channel, each module hears
every transmission.

Control lines
Data lines
Address lines

Each module
is identified by a unique address
has a bus interface

Modules other than processors need a controller.

Lecture 7 20

21Lecture 7 21

Figure 2.17 from the textbook

22

Bus sharing and optimization
Communication broadcast
Arbitration protocol decide which module has the control of the bus.
Supported by hardware:

a bus arbiter circuit
distributed among interfaces – each module has a priority
daisy chaining

Split-transaction a module uses the arbitration protocol to acquire
control of the bus
Optimization:

hide the latency of I/O devices
Channels dedicated processors capable to execute a channel program (IBM)
DMA (Direct Memory Access)

Support transparent access to files:
Memory Mapped I/O

23

Optimization

Direct Memory Access (DMA):
supports direct communication between processor and memory; the
processor provides the disk address of a block in memory where data is to
be read into or written from.
hides the disk latency; it allows the processor to execute a process while
data is transferred

Memory Mapped I/O:
LOAD and STORE instructions access the registers and buffers of an I/O
module

bus addresses are assigned to control registers and buffers of the I/O module
the processor maps bus addresses to its own address space (registers)

Supports software functions such as UNIX mmap which map an entire file.
Swap area: disk image of the virtual memory of a process.

2424

25

B. The software layer: the file abstraction
File: memory abstraction used by the application and OS layers

linear array of bits/bytes
properties:

durable information will not be changed in time
has a name
allows access to individual bits/bytes has a cursor which defines the
current position in the file.

The OS provides an API (Application Programming Interface)
supporting a range of file manipulation operations.
A user must first OPEN a file before accessing it and CLOSE it after
it has finished with it. This strategy:

allows different access rights (READ, WRITE, READ-WRITE)
coordinate concurrent access to the file

Some file systems
use OPEN and CLOSE to enforce before-or-after atomicity
support all-or-nothing atomicity e.g., ensure that if the system
crashes before a CLOSE either all or none of WRITEs are carried out

2626

	COT 4600 Operating Systems Fall 2009
	Lecture 7
	Naming
	Binding and indirection
	Generic naming model
	Operations on names in the abstract model
	Name mapping
	Name-mapping algorithms
	1. Table lookup
	How to determine the context
	Dynamic and multiple contexts
	2. Recursive name resolution
	Example
	3. Multiple lookup
	Comparing names
	Name discovery
	Computer System Organization
	A. The hardware layer
	Bus sharing and optimization
	Optimization
	B. The software layer: the file abstraction

