
Operating Systems COT 4600 –
Fall 2009

Dan C. Marinescu
Office: HEC 439 B
Office hours: Tu, Th 3:00-4:00 PM

Lecture 1 2

Class organization

Class webpage:

http://www.cs.ucf.edu/~dcm/Teaching/OperatingSystemsCOT4600/ClassIndex.html

Textbook:
``Principles of Computer Systems Design; An
Introduction'' by Jerome Saltzer and Frans
Kaasohoek. Publisher: Morgan Kaufmann,
ISBN 978-0-12-374957-4.

http://www.cs.ucf.edu/~dcm/Teaching/OperatingSystemsCOT4600/ClassIndex.html

Lecture 1 3

The textbook has 6 chapters

Systems
Elements of Computer System Organization
The Design of Naming Schemes
Enforcing Modularity with Clients and Services
Enforcing Modularity with Virtualization
Performance

Lecture 1 4

Class revision

We have revised the COT 4600 class for the Fall 2009
semester to give the students a fresh look at basic
principles guiding the design and implementation of
operating systems.

The focus of the class is switched from the discussion
on ``how'' operating systems are implemented to the
identification of the most important questions the
designer of an operating system has to address and
``why'' a solution is better than others.

Lecture 1 5

Class revision (cont’d)

Another major departure from the more traditional
approach in covering operating systems is the
emphasize on performance; several lectures cover
computer system performance analysis.

We also emphasize the ``big picture'' the relationship
of operating systems with other subjects from
undergraduate curriculum including:

computer architecture,
programming languages,
algorithms,
networking,
databases,
modeling and performance analysis.

Lecture 1 6

Assignments

There are 6 homework assignments and a class project.
A homework consists of 3-5 problems at the end of each
chapter in the textbook
The class project: simulate the operation of a simple
kernel for a computer system. It involves multiple phases:

Simulate a processor with a minimal instruction set operating in
kernel and user mode. Due week 4.
Virtualize the memory. Design and implement a paging system
and a virtual memory manager. Due week 8.
Virtualize the processor. Add a thread management system. Due
week 10.
Add a virtual communication channel allowing threads to
communicate using a bounded buffer and send and receive
primitives. Due week 14.

Lecture 1 7

Grading

Homework: 15%
Project: 35%
Midterm: 20%
Final: 30%

Lecture 1 8

Today:
Systems and Complexity
Sources of Complexity
Modularity, Abstractions, Layering, Hierarchy

Next time
Names
Complexity of Computer Systems

Lecture 1

Lecture 1 9

Man-made systems

Basic requirements for man-made systems:
Functionality
Performance
Cost

All systems are physical the laws of physics
governing the functioning of any system must be well
understood.
Physical resources are limitted.

Lecture 1 10

Complex systems

Large number of components
Large number of interconnections
Many irregularities
Long description
For man-made systems: a team of designers,
implementers, and maintainers.

Lecture 1 11

Issues faced by the designer of a
complex system

Emerging Properties
Propagation of effects
Incommensurate scaling
Tradeoffs

Lecture 1 12

Emerging properties

A characteristic of complex systems properties that
are not evident in the individual components but show
up when the components interact with one another.
Example: you have several electronic components
which radiate electromagnetic energy; if they are too
close to one another their function are affected.

Lecture 1 13

How the nature deals with complexity

For biological systems: symmetry, construction of
complex biological structures from building blocks.
Self-organization though difficult to define, its
intuitive meaning is reflected in the observation made
by Alan Turing that ``global order can arise from local
interactions''
Scale-free systems. Each component interacts directly
only with a small number of other components.
Man-made systems to imitate nature!!

Lecture 1 14

Scale-free systems

The scale-free organization can be best explained in
terms of the network model of the system, a random graph
with vertices representing the entities and the links
representing the relationships among them.
In a scale-free organization, the probability P(m) that a
vertex interacts with m other vertices decays as a power
law:

with d a positive real number, regardless of the type and
function of the system, the identity of its constituents, and
the relationships between them.

dmmP −≈)(

Lecture 1 15

Examples of self-organization

The collaborative graph of movie actors where links
are present if two actors were ever cast in the same
movie; in this case d=2.

The power grid of the Western US has some 5,000
vertices representing power generating stations; in this
case d=4.

The World Wide Web, d=2.1. This means that the
probability that m pages point to one page is

P(m) = m-2.1

The citation of scientific papers d=3.

Lecture 1 16

Propagation of effects

In a complex system:
Changes of one component affect many other components.

Example, changing the size of the tire of a car.
A problem affecting one component propagates to others. For
example, the collapse of the housing industry in the Us
affected the economy of virtually all countries in the world.

Lecture 1 17

Incommensurate scaling

Not all components of a complex system follow the
same scaling rules. Examples:

The pyramids
The tankers

The power dissipation increases as (clock rate)3. If you
double the clock rate, then the power dissipation
increases by a factor of 8 so you need a heat removal
system 8 times more powerful.

Lecture 1 18

Trade-offs

Many tradeoffs are involved in the design of any system
Examples:

a network switch what should be done in hardware and what
should be done in software
a hybrid car with a gas and an electric engine how powerful
should the gas engine be
a spam filter where to set the threshold

Lecture 1 19

Systems and the environment

System a set of interconnected components that
has a an expected behavior observed at the interface
with its environment
The environment a critical component to be
considered in the design of any system

Lecture 1 20

Two sources of complexity
1. Cascading and interacting requirements

1.1 When the number of requirements grows then the number
of exception grows.
1.2 The principle of escalating complexity:

Lecture 1 21

Two sources of complexity (cont’d)

1.3 Meeting many requirements with a single design the
need for generality. Advice: avoid excessive generality.
1.4 Requirement changes:

Example: the electric car produced by Tesla.

Lecture 1 22

Two sources of complexity (cont’d)

2. High performance
2.1 Every system must satisfy performance standards.
2.2 The law of diminishing return the more one improves one
performance metrics the more effort the next improvement will
require

Lecture 1 23

Modularity for Coping with Complexity

Why does modularity reduce complexity we can
focus on the interaction within one module/component.
Example: assume that:

B - the # of bugs in a program is proportional with N , the
number of statements
T- the time to debug a program is proportional with N x B thus
it is proportional with N2

Now we divide the program in K modules each with N/K
statements each:

The time to debug a module is proportional with (N/K)2

The time to debug the K modules is K x (N/K)2 = N2/K
We have reduced the time by a factor of K. Is that so?

Lecture 1 24

Abstractions for Coping with Complexity

Abstraction separation of the
interface from the internals or
specification from implementation

Example: you do not need to know how the engine of your car
works in order to drive the car

Why abstractions reduce complexity because they
minimize the interconnections between components.
Observations:

Best division usually follows natural boundaries.
The goal is defeated by unintentional or accidental
interconnections among components.

Lecture 1 25

More about abstractions

• Abstractions are critical for understanding critical
phenomena. Think about the abstract model of
computation provided by the Turing Machine.

• Do not be carried away by abstractions. For example,
often software designers think about an abstract
computer and are not concerned about the physical
resources available to them. E.g., the small display of
a wireless phone.

Lecture 1 26

More about abstractions (cont’d)

The robustness principle be tolerant of inputs and
strict on outputs.

Lecture 1 27

More about abstractions (cont’d)

The safety margin principle Keep track of the safty
margin of the cliff or you may fall over edge!!

Lecture 1 28

Layering for Coping with Complexity

Layering building a set of successive functional
entities with restricted communication patterns, a layer
may only communicate with the layer below it and with
the one above it.
Examples: networking

Lecture 1 29

Hierarchy for Coping with Complexity

Hierarchical structures construct a large system
from a small collection of relatively large subsystems
Examples:

Corporations
An army
A computer is a collection of subsystems

	Operating Systems COT 4600 – Fall 2009
	Class organization
	The textbook has 6 chapters
	Class revision
	Class revision (cont’d)
	Assignments
	Grading
	Lecture 1
	Man-made systems
	Complex systems
	Issues faced by the designer of a complex system
	Emerging properties
	How the nature deals with complexity
	Scale-free systems
	Examples of self-organization
	Propagation of effects
	Incommensurate scaling
	Trade-offs
	Systems and the environment
	Two sources of complexity
	Two sources of complexity (cont’d)
	Two sources of complexity (cont’d)
	Modularity for Coping with Complexity
	Abstractions for Coping with Complexity
	More about abstractions
	More about abstractions (cont’d)
	More about abstractions (cont’d)
	Layering for Coping with Complexity
	Hierarchy for Coping with Complexity

