MAC 2313-02 Calculus III
Final Exam
12/13/2012
Print Name \qquad

1. (10pt) The vector equation of a curve C is $\vec{r}(t)=\langle 3 \cos t, 3 \sin t, 4 t\rangle$.
(a) Find the arc length between the points $P(3,0,0)$ and $Q(3,0,8 \pi)$ on the curve C. $\vec{r}^{\prime}=\langle-3 \sin t, 3 \cos t, 4\rangle$.
The point P corresponds to the parameter value $t=0$, while Q corresponds to $t=2 \pi$. Arc length between P and Q is given be

$$
\int_{0}^{2 \pi}\left|\vec{r}^{\prime}(t)\right| d t=\int_{0}^{2 \pi} \sqrt{(-3 \sin t)^{2}+(3 \cos t)^{2}+4^{2}} d t=\int_{0}^{2 \pi} 5 d t=10 \pi
$$

(b) Find the coordinates of a point R other than $P(3,0,0)$ on the curve C, such that the arc length between R and Q is the same as the arc length between P and Q.

The arc length formula starts at Q is given by
$\int_{2 \pi}^{t}\left|\vec{r}^{\prime}(u)\right| d u=\int_{2 \pi}^{t} \sqrt{(-3 \sin u)^{2}+(3 \cos u)^{2}+4^{2}} d u=\int_{2 \pi}^{t} 5 d u$
Setting $5(t-2 \pi)=10 \pi$ to see $t=4 \pi$, which corresponds to the point $R(3,0,16 \pi)$.

2. (10pt) $f(x, y, z)=x e^{y}+y e^{z}+z e^{x}$.
(a) (3pt) Find the gradient of $f(x, y, z)$.

Solution:

$$
\nabla f=\left\langle f_{x}, f_{y}, f_{z}\right\rangle=\left\langle e^{y}+z e^{x}, x e^{y}+e^{z}, y e^{z}+e^{x}\right\rangle
$$

(b) (4pt) Find the directional derivative of f at the point $(0,0,0)$ in the direction of $\langle 0,2,1\rangle$.
Solution:

$$
\begin{aligned}
\boldsymbol{u} & =\frac{\langle 0,2,1\rangle}{\sqrt{0^{2}+2^{2}+1^{2}}}=\frac{1}{\sqrt{5}}\langle 0,2,1\rangle \\
(\nabla f)(0,0,0) & =\langle 1,1,1\rangle \\
D \boldsymbol{u} f(0,0,0) & =(\nabla f)(0,0,0) \cdot \boldsymbol{u} \\
& =\frac{1}{\sqrt{5}}\langle 1,1,1\rangle \cdot\langle 0,2,1\rangle \\
& =\frac{3}{\sqrt{5}}
\end{aligned}
$$

(c) (3pt) Find the maximum rate of change of f at the point $(0,0,0)$. In which direction does it occur?
Solution: The maximum rate of change occurs in the direction of the gradient

$$
\nabla f(0,0,0)=\langle 1,1,1\rangle
$$

and the rate of change is given by the magnitude of the gradient

$$
|\nabla f(0,0,0)|=\sqrt{3}
$$

3. (10pt) Find the local maximum and minimum values and saddle points of $f(x, y)=$ $x^{2}-x y+y^{2}+9 x-6 y+10$, if they exist.
Solution:

$$
\begin{aligned}
& f_{x}=2 x-y+9 \\
& f_{y}=-x+2 y-6
\end{aligned}
$$

Setting $f_{x}=0, f_{y}=0$ to get $x=-4, y=1$. Thus, $(-4,1)$ is the only critical point.

$$
\begin{aligned}
f_{x x} & =2 \\
f_{y y} & =2 \\
f_{x y} & =-1
\end{aligned}
$$

Since $f_{x x} f_{y y}-f_{x y}^{2}>0$ and $f_{x x}>0$ at the point $(-4,1), f(x, y)$ has a local minimum $f(-4,1)=-11$ at the point $(-4,1)$.
4. (10pt) Sketch the region of integral and calculate the iterated integral by first reversing the order of integration.

$$
\int_{0}^{3} \int_{\sqrt{y / 3}}^{1} e^{x^{3}} d x d y
$$

Solution:

$$
\begin{aligned}
\int_{0}^{3} \int_{\sqrt{y / 3}}^{1} e^{x^{3}} d x d y & =\int_{0}^{1} \int_{0}^{3 x^{2}} e^{x^{3}} d y d x \\
& =\int_{0}^{1} 3 x^{2} e^{x^{3}} d x \quad \text { substitute } u=x^{3} \\
& =\int_{0}^{1} e^{u} d u \\
& =e-1
\end{aligned}
$$

5. (10pt) Find the volume of the solid bounded by the two paraboloids $z=3 x^{2}+3 y^{2}$ and $z=4-x^{2}-y^{2}$.
Solution: Setting $3 x^{2}+3 y^{2}=4-x^{2}-y^{2}$ to see $x^{2}+y^{2}=1$, which is the intersection of the two paraboloids. So, the projection of the volume (i.e. D) on the $x y$-plane is the unit disk.

The volume is given by the double integral

$$
\begin{aligned}
& \iint_{D}\left[\left(4-x^{2}-y^{2}\right)-\left(3 x^{2}+3 y^{2}\right)\right] d A \\
= & \iint_{D}\left(4-4 x^{2}-4 y^{2}\right) d A \\
= & \int_{0}^{2 \pi} \int_{0}^{1}\left(4-4 r^{2}\right) r d r d \theta \\
= & \int_{0}^{2 \pi} \int_{0}^{1}\left(4 r-4 r^{3}\right) d r d \theta \\
= & \left.\int_{0}^{2 \pi}\left(2 r^{2}-r^{4}\right)\right|_{0} ^{1} d \theta \\
= & 2 \pi .
\end{aligned}
$$

6. (10pt) Find the volume of the solid that lies within the sphere $x^{2}+y^{2}+z^{2}=4$, above the $x y$-plane and below the cone $z=\sqrt{x^{2}+y^{2}}$.
Solution: In spherical coordinates,

$$
\begin{aligned}
x & =\rho \sin \phi \cos \theta \\
y & =\rho \sin \phi \sin \theta \\
z & =\rho \cos \phi
\end{aligned}
$$

Plug them into $x^{2}+y^{2}+z^{2}=4$ to see the sphere is $\rho=2$.
Plug them into $z=\sqrt{x^{2}+y^{2}}$ to see the cone is $\phi=\frac{\pi}{4}$. Therefore,

$$
\begin{aligned}
V & =\int_{0}^{2 \pi} \int_{\pi / 4}^{\pi / 2} \int_{0}^{2} \rho^{2} \sin \phi d \rho d \phi d \theta \\
& =\int_{0}^{2 \pi} d \theta \int_{\pi / 4}^{\pi / 2} \sin \phi d \phi \int_{0}^{2} \rho^{2} d \rho \\
& =(2 \pi)\left(\frac{\sqrt{2}}{2}\right) \frac{8}{3} \\
& =\frac{8}{3} \sqrt{2} \pi
\end{aligned}
$$

7. (10pt) Use Stokes' theorem to evaluate $\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}$, where $\mathbf{F}(x, y, z)=x^{2} z^{2} \mathbf{i}+$ $y^{2} z^{2} \mathbf{j}+x y z \mathbf{k}$ and S is the part of the paraboloid $z=x^{2}+y^{2}$ that lies inside the cylinder $x^{2}+y^{2}=1$, oriented upward.
(Hint: Stokes' theorem: $\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}$. The boundary of S (i.e. the curve C) is the intersection of the paraboloid with the the cylinder.)

Solution:
The boundary of S is the intersection of the paraboloid and the cylinder, which is a circle with radius 1 on the plane $z=1$. Thus, the boundary C has a parametric equation

$$
\begin{aligned}
\boldsymbol{r}(\theta) & =\langle\cos \theta, \sin \theta, 1\rangle, \quad 0 \leq \theta \leq 2 \pi \\
\text { and } \quad \boldsymbol{r}^{\prime}(\theta) & =\langle-\sin \theta, \cos \theta, 0\rangle
\end{aligned}
$$

By Stokes' Theorem,

$$
\begin{aligned}
\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S} & =\int_{C} \mathbf{F} \cdot d \mathbf{r} \\
& =\int_{0}^{2 \pi} \mathbf{F} \cdot \boldsymbol{r}^{\prime}(\theta) d \theta \\
& =\int_{0}^{2 \pi}\left\langle(\cos \theta)^{2}(1)^{2},(\sin \theta)^{2}(1)^{2},(\cos \theta)(\sin \theta)(1)\right\rangle \cdot \boldsymbol{r}^{\prime}(\theta) d \theta \\
& =\int_{0}^{2 \pi}\left(-\cos ^{2} \theta \sin \theta+\sin ^{2} \theta \cos \theta\right) d \theta \\
& =\left.\frac{\cos ^{3} \theta}{3}\right|_{0} ^{2 \pi}+\left.\frac{\sin ^{3} \theta}{3}\right|_{0} ^{2 \pi} \\
& =0+0 \\
& =0
\end{aligned}
$$

8. (10pt) Evaluate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where $\mathbf{F}=x \mathbf{i}+y \mathbf{j}+\mathbf{k}$ and S is the part of the cone $z^{2}=x^{2}+y^{2}$ that lies between the planes $z=1$ and $z=2$, oriented upward.
Solution:
The parametric equation of S is $\boldsymbol{r}(a, \theta)=\langle a \cos \theta, a \sin \theta, a\rangle$, where $1 \leq a \leq 2$ and $0 \leq$ $\theta \leq 2 \pi$. (Note: the z component is a, because $z^{2}=x^{2}+y^{2}=(a \cos \theta)^{2}+(a \sin \theta)^{2}=a^{2}$.
Then $z=a$.)

$$
\begin{aligned}
& \boldsymbol{r}_{a}=\langle\cos \theta, \sin \theta, 1\rangle \\
& \boldsymbol{r}_{\theta}=\langle-a \sin \theta, a \cos \theta, 0\rangle \\
& \boldsymbol{r}_{a} \times \boldsymbol{r}_{\theta}=\langle-a \cos \theta,-a \sin \theta, a\rangle \quad(\text { upward orientation) } \\
& \iint_{S} \mathbf{F} \cdot d \mathbf{S} \\
&=\int_{D} \int_{D} \mathbf{F} \cdot\left(\boldsymbol{r}_{a} \times \boldsymbol{r}_{\theta}\right) d A \quad D=[1,2] \times[0,2 \pi] \\
&=\int_{0}^{2 \pi} \int_{1}^{2 \pi}\langle a \cos \theta, a \sin \theta, 1\rangle \cdot\langle-a \cos \theta,-a \sin \theta, a\rangle d a d \theta \\
&= 2 \pi\left(-a^{2}+a\right) d a d \theta \\
&=-\frac{5 \pi}{3}
\end{aligned}
$$

Alternatively, S can be parametrized as

$$
\boldsymbol{r}(x, y)=\left\langle x, y, \sqrt{x^{2}+y^{2}}\right\rangle
$$

where x, y belongs to the region E between two circles $x^{2}+y^{2}=1^{2}$ and $x^{2}+y^{2}=2^{2}$.

$$
\begin{aligned}
\boldsymbol{r}_{x} & =\left\langle 1,0, \frac{x}{\sqrt{x^{2}+y^{2}}}\right\rangle \\
\boldsymbol{r}_{y} & =\left\langle 0,1, \frac{y}{\sqrt{x^{2}+y^{2}}}\right\rangle \\
\boldsymbol{r}_{x} \times \boldsymbol{r}_{y} & =\left\langle-\frac{x}{\sqrt{x^{2}+y^{2}}},-\frac{y}{\sqrt{x^{2}+y^{2}}}, 1\right\rangle \quad \text { (upward orientation) } \\
\iint_{S} \mathbf{F} \cdot d \mathbf{S} & =\iint_{E} \mathbf{F} \cdot\left(\boldsymbol{r}_{x} \times \boldsymbol{r}_{y}\right) d A \\
& =\iint_{E}\langle x, y, 1\rangle \cdot\left\langle-\frac{x}{\sqrt{x^{2}+y^{2}}},-\frac{y}{\sqrt{x^{2}+y^{2}}}, 1\right\rangle d x d y \\
& =\iint_{E}\left(-\sqrt{x^{2}+y^{2}}+1\right) d x d y \\
& =\int_{0}^{2 \pi} \int_{1}^{2}(-r+1) r d r d \theta \\
& =\left.2 \pi\left(-\frac{r^{3}}{3}+\frac{r^{2}}{2}\right)\right|_{1} ^{2} \\
& =-\frac{5 \pi}{3}
\end{aligned}
$$

9. (10pt) Find the area of part of the surface $3 x+4 y+z=6$ that lies in the first octant. Solution:

One of the parametrizations about the surface plane S is

$$
\mathbf{r}(x, y)=\langle x, y, 6-3 x-4 y\rangle
$$

where $0 \leq y \leq \frac{6-3 x}{4}, 0 \leq x \leq 2$. Then,

$$
\begin{aligned}
\mathbf{r}_{x} & =\langle 1,0,-3\rangle, \\
\mathbf{r}_{y} & =\langle 0,1,-4\rangle, \\
\mathbf{r}_{x} \times \mathbf{r}_{y} & =\langle 3,4,1\rangle \\
\left|\mathbf{r}_{x} \times \mathbf{r}_{y}\right| & =\sqrt{26}
\end{aligned}
$$

The area is given by

$$
\begin{aligned}
\iint_{S} d S & =\iint_{S}\left|\mathbf{r}_{x} \times \mathbf{r}_{y}\right| d y d x \\
& =\int_{0}^{2} \int_{0}^{\frac{6-3 x}{4}} \sqrt{26} d y d x \\
& =\sqrt{26} \int_{0}^{2} \frac{6-3 x}{4} d x \\
& =\left.\sqrt{26}\left(\frac{6}{4} x-\frac{3}{8} x^{2}\right)\right|_{0} ^{2} \\
& =\frac{3}{2} \sqrt{26} .
\end{aligned}
$$

10. $(10 \mathrm{pt}) \mathbf{F}(x, y)=x^{2} \mathbf{i}+y^{2} \mathbf{j}$.
(a) Show that \mathbf{F} is conservative and find f such that $\nabla f(x, y)=\mathbf{F}(x, y)$.

Solution:
Set $P=x^{2}, Q=y^{2}$. Then $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$. Since \mathbf{F} is well defined everywhere, \mathbf{F} is conservative.

If $\nabla f(x, y)=\mathbf{F}(x, y)$, then

$$
\begin{aligned}
& f_{x}=x^{2} \\
& f_{y}=y^{2}
\end{aligned}
$$

By partial integration,

$$
f=\frac{1}{3} x^{3}+\frac{1}{3} y^{3}+K \quad \text { where } K \text { is a constant. }
$$

(b) Use the result in part (a) and the Fundamental Theorem for line integral to calculate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where C is the arc of the parabola $y=2 x^{2}$ from $(0,0)$ to $(1,2)$. Solution:

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =f(1,2)-f(0,0) \\
& =3
\end{aligned}
$$

