
Appendix to Sex as an Algorithm:
The Theory of Evolution under
the Lens of Computation.

A. Additional Background and Literature

Because of CACM space limitations, in
the main text of our paper we did not
cite as much relevant and related previ-
ous material as we could, and here we
give a few more references.

A.1. Introduction

Jacque Monod’s comment was made in
[43].

Dobzhansky made his point in a 1964
presidential address to the American
Society of Zoologists and used it in the
title of an essay [13].

A good introduction to the scien-
tific crisis that arose from the rediscov-
ery of Mendel’s laws—“the biometry-
Mendelism debate”—is [52].

The reader interested in Fisher,
Wright and Haldane’s works may start,
for example, by reading [21, 61, 62, 23].

A.2. Evolution and Computer Science

See references in main text.

A.3. The Role of Sex

On sex and recombination:
From an evolutionary theoretical per-

spective, sex and recombination have
been studied in two principal ways. The
first consisted of models attempting to
answer the question of what benefit
sex may bring (to individuals, popu-
lations or species). Here, some main
20th-century hypotheses have been the

Fisher-Muller theory [21, 45], Muller’s
ratchet [46], the deterministic muta-
tion hypothesis [30] and the parasite
hypothesis [38, 28, 24]. For other hy-
potheses, see, e.g.,[14, 7], and for re-
views, see [20, 1, 31, 19, 5]. The other
main approach has been modifier the-
ory, focusing not on what benefits sex-
ual recombination may bring, but on
whether and how recombination rates
evolve within a traditional population
genetic framework [48, 16, 17, 18, 2,
6, 3, 10, 34, 22]. Finally, awareness
of the costs of sex [56] has become
part of the investigation since Maynard-
Smith’s formalization of the two-fold
cost, according to which an all-female
lineage can reproduce twice as fast than
a sexual lineage because it spends no ef-
fort on male production [40, 41].

Despite nearly a century of research,
problems abound. First, each of the hy-
potheses on the benefit of sex required
specific conditions to be met, in con-
trast to the prevalence of sex in nature
[19, 58, 56]. Thus, in 1999, West et
al. proposed the pluralistic hypothesis
[58], according to which different ben-
efits explain sex in different species—
arguably an unparsimonious answer to
a very weighty question. Second, in the
realm of modifier theory, the reduction
principle has demonstrated the general
difficulty of maintaining non-zero sex-
ual recombination rates [48, 36, 16, 17,
18, 2, 6, 19], and specific parameters
are needed in order to reverse it [3, 10,



22], which is again incongruent with the
prevalence of sex in nature.

The issue of the two-fold cost also suf-
fers from many difficulties. First, it
holds only in the case where males make
no parental investment and where the
production of males adds an investment
equal in magnitude to that of the pro-
duction of females. Since this condi-
tion excludes many organisms, such as
the majority of the flowering plants, it
is not clear how useful a concept it is
for understanding the problem of sex
in its proper generality. Second, for
the same reason, if the two-fold cost
were important, one would have ex-
pected to see more sex in isogamous
than anisogamous organisms (in the
former, both mating types invest in off-
spring), whereas in nature, in a sense,
the opposite is true [26]. Third, there
are still many other potentially impor-
tant costs of sex [56], making it so that
their sum total is neither “two-fold” nor
practically quantifiable. Indeed, the
fact that it has become a fashion to use
“two-fold”as a benchmark in theoretical
studies of sex (such that if and only if
a benefit of sex is found that overcomes
it, sex is explained), may have had
more to do with the fame of Maynard-
Smith and the catchiness of his formal-
ization than with well-thought-out sci-
entific reasons. Fourth, if sex had no
costs, we would still need to understand
its role, making it so that the investiga-
tion of sex is not inseparable from the

investigation of its costs.
Not all experts on the theory of

the evolution of sex and recombina-
tion agree with us that the problem
is wide open [5]. However, a word
of caution is that even Nobel Laure-
ate and legendary geneticist Hermann
J. Muller wrote in 1932 that genet-
ics has finally settled the raison d’être
and function of sex [45], even though
other main hypotheses on these ques-
tions were brought forth later besides
his own. Our paper demonstrates that
there is much that is of interest outside
of the traditional boundaries within
which sex has been studied, and which
is informed by the computational lens—
from the robustness of mixability, to the
view of sexual evolution as a coordina-
tion game between genes played accord-
ing to MWUA, to the view of sex as a
randomized algorithm, to the connec-
tion between sex and a computational
view of genetic change.

On genetic interactions:
So far, there have been two fundamen-

tal ideas on what drives adaptive evo-
lution. One is that effective selection
acts at its core on additive variance—
on the part of the contribution of an
allele to fitness that is independent of
the genetic context [21]. This idea is
tied to the problem of sex: Williams
argued that effective selection can only
act on sufficiently small stretches of the
genome—on single loci as independent
actors—because only a small stretch



lasts through the generations undis-
turbed by sexual recombination as to be
able to experience selection effectively
[59]. However, already from Fisher’s
days it has been recognized that a view
based on non-interacting loci is un-
realistic, hence Wright put forth the
second major idea—that chance alone
may drive the fixation of alleles under
some conditions, forming the basis for
new beneficial genetic interactions by
chance [61, 62]. This chance fixation of
alleles is called “random genetic drift,”
and Wright’s view of adaptive evolu-
tion based on this drift, selection on ad-
ditive variance and migration is called
the “shifting balance theory” [61, 62].
Note that Wright believed that genetic
interactions were key, but did not offer
a selection-based mechanism to explain
their formation. Thus, following Fisher
and Wright, researchers were left with
the main principles of the chance aris-
ing of a mutation, the chance fixation of
it and selection acting on additive vari-
ance, among other issues such as migra-
tion [21, 61, 62]. Besides these princi-
ples, many models in population genet-
ics have examined the selective effect of
genetic interactions, or “epistasis” [60].
For example, Fisher was interested in
genetic interactions for his theory of the
evolution of dominance [21]. As an-
other example, Kondrashov’s hypothe-
sis on the role of sex required (perhaps
unrealistically) the assumption that a
particular type of genetic interaction is

nearly ubiquitous [30, 32]. Note, how-
ever, that in this nearly century-long
research, genetic interactions have been
studied as a subsidiary element in the
theory—as a correction to the core the-
ory of selection acting on additive vari-
ance.

Thus, while the obvious effect of sex-
ual recombination is that it creates
transient genetic combinations—indeed
it creates individual genotypes— it
has not been considered that selec-
tion acting directly on these transient
combinations—on individual genotypes
as complex wholes—can be at the core
of the adaptive evolutionary process.
This has not been considered precisely
because of the transience of these com-
binations. In this paper we have dis-
cussed two ways by which selection on
trasient, complex genetic combinations
can be important: one is that such
selection favors mixability—the abil-
ity of alleles to perform well across
many different genetic combinations—
and the other is that mutation as a
computational event allows information
to be transmitted across loci and thus
changes the nature of heredity in the
presence of recombination.

A.4. A Game Between Genes

On the search for an optimization prin-
ciple:

Further results in the line of thinking
originated by Wright [63] are given in
[27].



Fisher’s fundamental theorem is of-
ten invoked in discussions about the
meaning of the evolutionary process. It
demonstrates, unfortunately in a par-
tial sense that has been criticized [51,
15, 47], that the rate of increase of the
population mean fitness is equal to the
additive variance in fitness [21].

Following the works of Fisher and
Wright, and despite the severe limi-
tations on their results, the popula-
tion mean fitness has often been tac-
itly treated in theoretical studies as the
“end goal of evolution.” Specifically in
theoretical research on the benefit of
sex, investigators have often assumed
that the question to be answered is
“how does sex facilitate the increase in
the population mean fitness measure”
[19]. One important criticism of this
assumption is based on the levels-of-
selection debate and has already been
explained elsewhere [19]. Another im-
portant point is that the term “fitness”
has two different meanings. In one, it
is the harmony between the organism’s
complex adaptive structure and behav-
ior, and its environment. In the other,
it is the organism’s expected number
of surviving offspring. For Darwin, the
former fitness was the end and the lat-
ter was a means of adaptive evolution,
yet the mathematization of evolution-
ary theory has subtly shifted the dis-
course to the latter. Principles such as
reviewed here may be part of an ex-
panded understanding of the evolution-

ary process that is a work in progress,
and thus of the increase in fitness in the
original sense.

On evolutionary game theory:
Game theory has been used in evolu-

tionary theory before to study strate-
gic individual behavior [42, 57]. The
concepts of it are also invoked at the
genetic level by the selfish gene view
[11]. The use of game theory de-
scribed here is very different. We
show that the basic equations of evo-
lution in the presence of natural se-
lection and sexual reproduction can be
described as a repeated coordination
game between genes, and furthermore
the game is played according to the
powerful MWUA. Thus, game theoretic
concepts are applied here at a funda-
mental level, prior to the consideration
of any conflict—the main ingredient of
past evolutionary game theory.

A.5. Are Mutations Random?

It is agreed today by biologists that
there exist complex biological influ-
ences on mutation. The question is
whether these biological influences are
important for the evolutionary process
or not. The brief argument made in this
paper on the topic is fundamentally dif-
ferent than those made before.

In the past literature on non-
accidental mutation in evolutionary bi-
ology one can recognize two main ideas.
One idea was that of an “adaptive” or
“directed” mutation (but see [55] for a



distinction between these two terms)
in bacteria which responds to the im-
mediate environment (e.g., [8]). This
idea was met with resistance due to
its presumed Lamarckian implications
(e.g., [55, 37]). Another idea was that
evolution in the long term could lead
to mutational mechanisms that respond
in a generic way to pressures encoun-
tered repeatedly before (e.g., [44, 53,
9, 33]). For example, it was hypoth-
esized that an increased general muta-
tion rate in bacteria under conditions of
stress could be a result of natural selec-
tion (see [54] for a review and criticism).
However, this line of thinking provides
what may be a limited conceptualiza-
tion and interpretation of the evidence.
First, models show that it is hard to ex-
plain the evolution of such mechanisms
from a traditional perspective [36, 18, 2,
4]. Second, it relies on accidental mu-
tation as the ultimate source of novelty,
confining mutational mechanisms to a
later, minor role, and ignoring the pos-
sibilities that mutational mechanisms
are involved in evolution in general and
in a continually evolving manner spe-
cific to the currently evolving adapta-
tion.

Importantly, neither of these preexist-
ing lines of thinking has offered the in-
sight that, being a result of genetic in-
teractions, mutation can be seen as an
event of information flow and computa-
tion, accepting “inputs” from multiple
loci, and producing an “output” that is

the mutation. For starters, this changes
the nature of heredity in a way that
allows the complex, transient genetic
combinations generated by sex to leave
heritable effects on future generations
[39]. Thus, the computational-lens [50,
29] stands to make a contribution also
to our understanding of mutation.

A.6. On the preservation of variation

For modern work reaffirming the para-
dox of variance exposed by [49] see [35].

For overdominance, or heterozygote
advantage, see [12, 25].
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The Experts Problem

Imagine that every day over five years you receive financial advice from ten experts. If you follow
the advice of any one of them, that day you will realize a gain somewhere between −1 and +1
(you fill in the units). You have no idea how good each of them is, and yet each day you must
choose one expert. What is a good algorithm for choosing an expert, day after day, so you will
end up doing well?
This is not a well defined problem, because in our objective “to do well” we have not specified
“compared to what?” Let us set a very ambitious goal. You want to choose experts in such a way
that, five years later, you can look back and say: “In retrospect, Expert 4 was the best, because if
I had followed her advice throughout I would be better off than if I had followed the advice of any
other single expert. But I did not know this in the beginning. Still, I managed to do almost as
well as if I had followed exclusively the advice of Expert 4.” In other words, we want to find an
algorithm which picks the best expert — give or take something very small — from the start and
in hindsight! At first sight, this might seem impossible. Note that we are not assuming anything
about any probabilistic distribution of the experts’ performance. In fact, it is instructive to think
that the outcomes of the experts’ advice each day are chosen by an adversary who wants you to
fail in your goal.
Very surprisingly, this feat is made possible by a very simple algorithm called multiplicative weight
updates (MWU). It has a long history: It was discovered in the 1950s by economists, then in the
1980s in the mathematics of finance, then in the 1990s by researchers in AI (where it has been
called first “Winnow,”“Hedge,” and finally “Boosting”), and finally by theoreticians as MWU. The
algorithm is the following:

Fix a very small number ε > 0 (see below for appropriate value)
Give each expert i (out of n) the same probability pi = 1

n
At each day t = 1, . . . , T do the following:

Pick an expert at random, where you choose i with probability pi
Let gj be the gain you would have obtained if you had chosen expert j, for j = 1, . . . , n
For j = 1, . . . , n, update the probabilities as follows: pj ← pj(1 + εgj),
and divide all pj’s by

∑n
i=1 pj (to keep them adding to one).

That is, each day you boost (or decrease) the probability of each expert by a small amount

proportional to its gain (or loss). The theorem says that, if you choose ε =
√

lnn
T

, your total gain

in the end of T days will be, in expectation, within
√
T lnn of the optimum. For large T this will

be insignificant, compared to the range [−1,+1]. In our example with n = 10 and T = 1825, on
an average day you are guaranteed to be only about .05 units of gain below the performance of
the best expert.


