Examination 2
COP 4600 Operating Systems
March 27, 1997

Instructions
1. Read and follow all instructions.
2. This is a closed-book examination.
3. You are permitted on 8.5 by 11 inch sheet of notes, both sides, that you have prepared.

4. Answer any three (3) questions. All questions are of equal value. Points for each part of each
question are given in parentheses.

5. Leave sufficient room in the upper lefthand corner for the staple.

6. Use exactly one page of paper (both sides is OK) to hold the answer to each question, and please
write legibly.

7. Start the answer to each question on a new page (i.e., do not put the answer to more than one
question on the same page).

8. Assemble your answers in numerical order of the questions when you submit them.

9. Read and sign the following statement. You may write this on your exam and sign it there
if you wish to take the exam questions home with you today.

On my honor, I have neither given nor received unauthorized aid on this examination.
Signed:



1. (a)

(7) Describe and compare shared memory solutions (using the atomic load/store model) to
hardware solutions for the critical section problem. Under what circumstances would either
of these types of solution fail, and how?

(8) In what way do semaphores improve over either of the solutions of the previous part of this
question? When would semaphores be most useful? When might semaphores be less desirable
than the solutions from the previous part? Why?

(6) How do monitors improve over semaphores for synchronization? Compare and contrast
condition variables and semaphores.

(4) Describe a synchronization primitive provided in Minix. How does it provide synchroniza-
tion?

2. Consider a system in which there are four processes (P;, P, P3, Py) and three resource types (A, B,
and C). There are three instances of A, two instances of B, and four instances of C'. Py holds one
instance of A and one of C, P, holds one instance of B and two of C, P; holds one instance of B,
and P, holds one instance of A.

(a)

(6) Suppose that P; requests one instance of A and one of C, P, requests one instance of B,
P; requests two instances of A and one of C, and Py requests one instance of A and two of
C. Draw the Resource Allocation Graph for this system state.

(6) Is the above system in deadlock or not? If so, state why, if not, give an order in which the
processes can complete.

(5) What is the difference between a safe state and an unsafe state in which there is no
deadlock? Why can a new request never take a system from a safe state into an unsafe state?

(8) Give example system states showing how a request can take a system from an unsafe state
to a deadlocked state; how an allocation can take a system from a safe state to a deadlocked
state; and how an allocation can take a system from a safe state to an unsafe state.

(8) What are the necessary conditions for deadlock? Why is each one necessary?

(9) What are the three ways of handling deadlock (other than ignoring it)? Name, describe
and compare them. Which condition(s) does each negate?

(8) What are resource contention graphs, and how can they be used to provide for greater
concurrency when a system constrains the order in which resources may be requested? What
type of solution is this and what condition(s) does it negate?

4. Suppose the head of a hard disk is at track 73, where tracks run from 0 to 255, and it just serviced
a request at track 51. Suppose there are requests queued (in the order of arrival) for accesses at
tracks 3, 60, 95, 85, 123, 17, 90, and 188.

(a)
(b)
()

(d)

(10) Give the total head movement required to service the requests in the following orders:
FCFS, SSTF, SCAN, C-SCAN, LOOK. Show your work.

(3) What is the optimal order (assuming no new requests arrive)? Give its total head move-
ment.

(9) What are the three components contributing to the time required for a disk access? What
can be done to improve each of these times? Which component does disk scheduling focus on,
and why? Why is disk scheduling often less helpful than it might be expected to be?

(3) What disk scheduling algorithm does Minix use? Why?



5. (25)
Solve the following synchronization problem using monitors or semaphores by writing the code
for get_free buffer(), get _full buffers(), announce free(), announce full() and any addi-
tional code needed. Be complete (declare and initialize variables, etc.). You may assume common
ADTs such as stacks and queues with the usual access procedures.

There are two types of items: A and B. Corresponding to each item type, there is a producer
type that exclusively produces items of its type. Both types of producer share a common buffer
pool in which to store the items they produce and where consumers find them. Consumers require
simultaneously one item of type A and another of type B fro processing. An item of either type
uses one buffer for storage, and there are N buffers total available. Producers only request a buffer
when they already have an item ready to store in it, and consumers pass in a pair of pointers to
local buffers into which the items they obtain are copied for processing later. You may assume that
copy_buff () copies the data in the buffer pointed to by the first argument into the buffer pointed
to by the second argument.

Your solution must be correct, must not have starvation of either producer type or the consumer,
and must allow N to be any value larger than 1. The code for generic producer and consumer
processes is given below, with X taking values in A or B. You should assume that there are several
processes of each type, each running at its own speed.

Producer X() {
buffer local buff, *shared buff;
while (TRUE) {
produce X(&local buff)
shared buff = get_free buffer(X);
copy_buff (&local buff, shared buff);
announce_full (X, shared buff);

}
}

Consumer () {

buffer local buff A, local buff B,
*shared buff_A, *shared buff B;

while (TRUE) {
get _full buffers(&shared buff A, &shared buff B);
copy-buff (shared buff A, &local buff A);
copy_buff (shared buff B, &local buff B);
announce_free(shared buff_A) ;
announce_free(shared buff_B);

consume (&local buff A, &local_buff B)

}



