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Probability and Statistics Concepts

Random Variable: a rule that assigns a numerical value to each possible outcome of an ex-
periment. All possible outcomes of the experiment constitute a sample space.

A random variable X on a sample space S is a function X : S 7→ R which assigns a real
number X(s) to every sample point s ∈ S. This real number is called the probability of that
outcome.

A discrete random variable maps events to values of a countable set e.g., the set of integers);
each value in the range has a probability greater than or equal to zero.

Example 1. the experiment is a coin toss; the outcome is either 0 (head) or 1 (tail). If the
coin is fair then p0 = p1 = 0.5; this means that in a large number of coin tosses we are likely
to observe heads in about half of the cases and tails in the other half of the cases. Another
example: when you throw throw a dice the outcome could be 1, 2, 3, 4, 5, or 6; for a fair dice
p1 = p2 = p3 = p4 = p5 = p6 = 1/6.

A continuous random variable maps events to values of an uncountable set (e.g., the real
numbers).

Example 2. the experiment is to measure the speed of cars passing through an intersection:
the speed could be any value between 15 and 80 miles/hour. the probability of observing cars
with a speed of 19.1 miles/hour could be zero but the probability of observing cars with a
speed from 15 to 19.1 miles/hour could be P19.1 = 0.3 which means that 30% of the cars we
observed have a speed in the range we considered.

A discrete random variable X has an associated probability density function, (also called
probability mass function) pX(x) defined as:

pX(x) = Prob(X = x)

and a probability distribution function also called cumulative distribution function, PX(x)
defined as:

PX(t) = Prob(X ≤ t) =
∑
x≤t

pX(x)

Example 3. You have a binary random variable X (the outcome is either 0 or 1) and:

p0 = Prob(X = 0) = q and p1 = Prob(X = 1) = p, with p + q = 1.

Bernouli trials: call the outcome of 1 a “success” and ask the question what is the probability
Yn that in n Bernoulli trials we have k successes:

pk = Prob(Yn = k) =

(
n

k

)
pk(1− p)n−k =

n!

k!(n− k)!
pk(1− p)n−k
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The binomial cumulative distribution function is:

B(t : n, p) =
t∑

k=0

(
n

k

)
pk(1− p)n−k

Example 4. You have again Bernoulli trials and ask the question how many trails you need
before the first “success”. If the first success occurs at the i-th trial then

pZ(i) = qi−1p

This is called a geometric distribution. It is easy to prove that:

∞∑
i=0

qi−1p =
p

1− q
= 1.

A continuous random variable X has an associated probability density function, (also called
probability mass function) pX(x) defined as:

fX(x) = Prob(X = x)

and a probability distribution function also called cumulative distribution function, FX(x)
defined as:

FX(t) = Prob(X ≤ t) =

∫ t

−∞
fX(x)dx

The expectation of random variable X: E[X] is defined by

E[X] =





∑
i xipX(xi) if X is discrete

∫ +∞
−∞ xf(x)dx if X is continuous

The variance Var[X] and standard deviation, σ of random variable X are defined by:

Var[X] = σ2 =





∑
i (xi − E[X])2 pX(xi) if X is discrete

∫ +∞
−∞ (x− E[X])2 f(x)dx if X is continuous

The moment of order k of random variable X is defined as:

E[Xk] =





∑
i x

k
i pX(xi) if X is discrete

∫ +∞
−∞ xkf(x)dx if X is continuous

The centered moment of order k of random variable X is defined as the k-th moment of the
random variable x− E[X]:

µk = E
[
(X − E[X])k

]
=





∑
i(xi − E[X])kpX(xi) if X is discrete

∫ +∞
−∞ (x− E[X])kf(x)dx if X is continuous
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Examples of common distributions

1. Uniform distribution in the interval [a,b]: see Figure 1.

fX(x) =

{
1

b−a
if a ≤ x ≤ b

0 if x < a or x > b

FX(x) =





0 if x < a
x−a
b−a

if a ≤ x ≤ b

1 if x > b

1

a b

a b

1

Figure 1: Probability density function (PDF) and cumulative distribution function of a uni-
form distribution

2. Standard normal distribution:

φ(x) =
1√
π

e−x2/2

3. Normal distribution with mean µ and standard deviation σ:

f(x) =
1

σ2
√

π
e−(x−µ)2/(2σ2)

The probability density function (PDF) and the cumulative distribution function (CDF) of a
normal distribution are displayed in Figures 2 and 3.
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Figure 2: Probability density function (PDF) of a normal distribution
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Figure 3: Cumulative distribution function (CDF) of a normal distribution

4. Exponential distribution with parameter λ. The probability density function (PDF) f(x)
and the cumulative distribution function (CDF), F (x) of an exponential distribution are
displayed in Figures 4 and 5.
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f(x) =

{
λxe−λx if x ≥ 0

0 if X < 0

F (x) =

{
1− e−λx if x ≥ 0

0 if X < 0

Figure 4: Probability density function (PDF) of an exponential distribution

Figure 5: Cumulative distribution function (CDF) of an exponential distribution
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Elements of Queuing Theory

Queuing theory describes systems where you have a server and customers and both the
arrival of the customers and the time it takes to service them are random variables with a
certain distribution. There are two stochastic (aleatory) processes involved:

• The arrival process describes the pattern of the customers arrive. The arrival processes
is characterized by its probability distribution function e.g., a uniform, exponential,
hyper exponential. The distribution can described by one or more parameters such as
the the average value of the random variables subject to that distribution, e.g., the
arrival rate denoted as λ or the the inter-arrival time (the average time between two
consecutive customer arrivals) 1

λ
. For example, if customers arrive in average at two

minutes intervals the arrival rate is 1/2 customers/minute and the inter-arrival time is
2 minutes.

• The service process which describes how customers are served. The service processes is
characterized by its probability distribution function e.g., a uniform, exponential, hyper
exponential. The distribution can described by one or more parameters such as the the
average value of the random variables subject to that distribution, e.g., the service rate
denoted as µ or the the service time (the average time between two consecutive customer
departures from the system) 1

µ
. For example, if the service rate is µ = 10 customers per

hour, then the service time is 1/µ = 60/10 = 5 minutes.

(a) Single server system

(b) Multiple server system

Figure 6: The single- and multiple-server queuing systems
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The pattern of customer behavior is illustrated in Figure 6:

1. The customer arrives in the system and joins a waiting queue. The time spent waiting
is called waiting time and it is denoted as W .

2. When its turn arrives the customer enters service and the service time is 1/µ.

3. When the service is terminated the customer leaves the system. The time spent the
customer is called the time in system T = W + 1/µ.

Other notations N is the total number of customers in system, one is in service and
(N-1) are waiting in the queue.

A system is stable if the queue of waiting customers does not grow to infinity. Obviously,
the service rate µ should be larger than the arrival rate λ, you should be able to process more
customers per unit of time than they arrive, otherwise the queue of customers will grow in
time. The number

ρ =
λ

µ

is called server utilization and ρ ≤ 1 for the system to be stable (otherwise the queue of
customers grows to infinity.

A queuing system is succinctly characterized as: A/S/m with: A -the arrival process, S
- the service process, and m the number of servers. The arrival and the service process are
abbreviated as:

• M - exponential

• E - r-stage Erlangen

• D - deterministic

• G - general

Example 5. M/M/1, M/M/m, M/G/1 are queueing systems when: (a) both the arrival
and the service process are Markov (exponential) and we have only one server; (b) both the
arrival and the service process are Markov (exponential) and we have m servers; (c) the arrival
process is Markov (exponential) and the service process is general and we have only one server.

Little’s Law. This law is general and realters the average number of customers in the system
N̄ with the average time spent by a customer in the system, T̄ , when the arrival rate is λ:

N̄ = λT̄

Rather than a rigorous proof, consider the following intuition. An “average customer” arrives
at time ta and leaves at time td. Being an “average customer” td−ta is equal to T̄ , the average
time spent by a customer in the system; when our “average customer” leaves, he counts the
number of customers in the system and finds it equal to the average, N̄ . But the customers
arrive at a rate λ thus, during an interval of length T̄ the total number is: N̄ = λT̄ .
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Poisson Process. The probability density function for a Poisson process is:

Pn(t) =
(λt)n

n!
e−λt

This equation gives the probability of seeing n arrivals in a period from 0 to t when λ is the
arrival rate.

It follows that the probability of no arrivals (n=0) in a period from 0 to t is:

P0(t) = e−λt

This equation shows that probability that no arrival takes place during an interval from 0 to
t is negative exponentially related to the length of the interval.

Example 6. Consider a highway with an average of 1 car arriving every 10 seconds λ = 0.1
cars/second arrival rate).

The probability of not seeing a single car on the highway decreases dramatically with the
observation period. If you observe the highway for a period of 1 second, there is 90% chance
that no car will be seen during that period. If you monitor the highway for 20 seconds, there
is only a 10% chance that you will not see a car on the highway. Put another way, there is
only a 10% chance two cars arrive less than one second apart. There is a 90% chance that
two cars arrive less than 20 seconds apart.

Birth and Death Process. We consider an M/M/1 system with arrival rate λ and service rate
µ. We say that the system is in state k if there are k customers in the system. Such a system
is modeled as a birth-death stochastic process with a potentially infinite number of states.
The state transition diagram of a birth-death process is presented in Figure 7.

K+1KK-10 1

λ λ λ λ λ

µ µ µ µ µ

Figure 7: The states and transitions of a Birth-Death Stochastic Process. Note that state k
can only be reached from state k−1 due to a birth or from state k +1 due to a death because
of the property of the Poisson process which prohibits multiple birth or death occurring at
the same time.

In steady-state the flow in and out of state k must be equal. The flow out of the state
k corresponds to births and occurs at a rate λ thus, it is equal to λpk; the flow into of the
state k corresponds to deaths and occurs at a rate µ thus, it is equal to µpk+1. We have the
following relation between the probabilities pk and pk+1 of states k and k + 1, respectively:

λpk = µpk+1 =⇒ pk+1 =
λ

µ
pk =⇒ pk+1 = ρpk.
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It follows that:

p1 = ρp0, p2 = ρp1 = ρ2p0, . . . , pk = ρpk−1 = ρkp0, . . . ...

But:

∞∑
i=0

pi = 1 =⇒ p0 + ρp0 + ρ2p0 + . . . ρkp0 + .. = 1

It follows that:

p0 =
1

(1 + ρ + ρ2 + . . . ρk + . . . )

But ρ ≤ 1 thus the sum of this geometric progression is equal to: 1/(1 − ρ). We conclude
that:

p0 = (1− ρ), p1 = (1− ρ)ρ, p2 = (1− ρ)ρ2 . . . pk = (1− ρ)ρk.

Knowing the probability of each state (recall that a state is characterized by the number of
customers in the system) it is trivial to determine the average number in system:

N̄ =
∞∑

k=0

kpk =
∞∑

k=0

k(1− ρ)ρk = (1− ρ)
∞∑

k=0

kρk

Recall again that ρ ≤ 1; the sum is:

∞∑

k=0

kρk =
ρ

1− ρ)2
.

It follows that:

N̄ =
ρ

1− ρ)
=

λ

µ− λ
.

If we apply Little’s Law we find that:

T̄ =
1

λ
N̄ =

1

µ− λ
=

1
µ

1− ρ

Figure 8 shows that T̄ →∞ when ρ → 1.

ρ

T

µ

1

Figure 8: The average time in system T̄ function of the utilization ρ.

9


