
COT 4600 Operating Systems Fall 2009

Dan C. Marinescu
Office: HEC 439 B
Office hours: Tu-Th 3:00-4:00 PM

22222

Lecture 17
Reading assignments: Chapter 5.1, 5.2 and 5.3
Phase 2 of the project and HW4 due on Thursday, October, 22

Last time:
Midterm

Today:
Virtualization

Threads
Virtual memory
Bounded buffers

Virtual Links
Thread coordination with a bounded buffer
Race conditions

Next Time:
Enforcing Modularity in Memory

Virtualization – relating physical with virtual objects
Virtualization
simulating the interface
to a physical object by:
1. Multiplexing create

multiple physical
objects from one
instance of a physical
object.

2. Aggregation create
one virtual object from
multiple physical
objects

3. Emulation construct
a virtual object from a
different type of a
physical object.
Emulation in software
is slow.

Method Physical
Resource

Virtual
Resource

Multiplexing processor thread

real memory virtual memory

communication channel virtual circuit

processor server (e.g., Web
server)

Aggregation disk RAID

core multi-core processor

Emulation disk RAM disk

system (e.g. Macintosh) virtual machine (e.g.,
Virtual PC)

Multiplexing +
Emulation

real memory + disk virtual memory with
paging

communication channel +
processor

TCP protocol

Virtualization of the three abstractions. (1) Threads
Implemented by the operating system for the three abstractions:

1. Threads a thread is a virtual processor; a module in execution
1. Multiplexes a physical processor
2. The state of a thread: (1) the reference to the next computational step (the

Pc register) + (2) the environment (registers, stack, heap, current objects).
3. Sequence of operations:

1. Load the module’s text
2. Create a thread and lunch the execution of the module in that thread.

4. A module may have several threads.
5. The thread manager implements the thread abstraction.

1. Interrupts processed by the interrupt handler which interacts with the thread
manager

2. Exception interrupts caused by the running thread and processed by
exception handlers

3. Interrupt handlers run in the context of the OS while exception handlers run in the
context of interrupted thread.

Virtualization of the three abstractions. (2) Virtual
memory

2. Virtual Memory a scheme to allow each thread to access only its own
virtual address space (collection of virtual addresses).
1. Why needed:

1. To implement a memory enforcement mechanism; to prevent a thread running
the code of one module from overwriting the data of another module

2. The physical memory may be too small to fit an application; otherwise each
application would need to manage its own memory.

2. Virtual memory manager maps virtual address space of a thread to
physical memory.

Thread + virtual memory allow us to create a virtual computer for each
module.
Each module runs in own address space; if one module runs mutiple
threads all share one address space.

Virtualization of the three abstractions: (3) Bounded
buffers

3 Bounded buffers implement the communication channel abstraction
1 Bounded the buffer has a finite size. We assume that all messages are of

the same size and each can fit into a buffer cell. A bounded buffer will only
accommodate N messages.

2 Threads use the SEND and RECEIVE primitives.

Principle of least astonishment
Study and understand simple phenomena or facts before moving to
complex ones. For example:

Concurrency an application requires multiple threads that run at the same
time. Tricky. Understand sequential processing first.
Examine a simple operating system interface to the three abstractions

Memory CREATE/DELETE_ADDRESS SPACE
ALLOCATE/FREE_BLOCK
MAP/UNMAP
UNMAP

Interpreter ALLOCATE_THREAD DESTROY_THREAD
EXIT_THREAD YIELD
AWAIT ADVANCE
TICKET
ACQUIRE RELEASE

Communication
channel

ALLOCATE/DEALLOCATE_BOUNDED_BUFFER
SEND/RECEIVE

Thread coordination with a bounded buffer

Producer-consumer problem coordinate the sending and
receiving threads
Basic assumptions:

We have only two threads
Threads proceed concurrently at independent speeds/rates
Bounded buffer – only N buffer cells
Messages are of fixed size and occupy only one buffer cell

Spin lock a thread keeps checking a control variable/semaphore
“until the light turns green”

Implicit assumptions for the correctness of the
implementation
1. One sending and one receiving thread. Only one thread updates each

shared variable.
2. Sender and receiver threads run on different processors to allow spin

locks
3. in and out are implemented as integers large enough so that they do not

overflow (e.g., 64 bit integers)
4. The shared memory used for the buffer provides read/write coherence
5. The memory provides before-or-after atomicity for the shared variables in

and out
6. The result of executing a statement becomes visible to all threads in

program order. No compiler optimization supported

Race conditions
Race condition error that occurs when a device or system
attempts to perform two or more operations at the same time, but
because of the nature of the device or system, the operations must
be done in the proper sequence in order to be done correctly.
Race conditions depend on the exact timing of events thus are not
reproducible.

A slight variation of the timing could either remove a race condition or
create.
Very hard to debug such errors.

time

Operations of Thread A

Buffer is empty

in=out=0

on=out=0

Fill entry 0 at time t1
with item b

0

Operations of Thread B

Fill entry 0 at time t2
with item a Increment pointer

at time t3

 in 1

Increment pointer
at time t4

 in 2

Two senders execute the code concurrently

Processor 1 runs
thread A

Processor 2 runs
thread B

Memory contains shared data
Buffer

In
out

Processor-memory
bus

Item b is overwritten, it is lost

One more pitfall of the previous implementation of
bounded buffer

If in and out are long integers (64 or 128 bit) then a load requires
two registers, e.,g, R1 and R2.
int “00000000FFFFFFFF”
L R1,int /* R1 00000000
L R2,int+1 /* R2 FFFFFFFF

Race conditions could affect a load or a store of the long integer.

Lock
Lock a mechanism to guarantee that a program works correctly
when multiple threads execute concurrently

a multi-step operation protected by a lock behaves like a single operation
can be used to implement before-or after atomicity
shared variable acting as a flag (traffic light) to coordinate access to a
shared variable
works only if all threads follow the rule check the lock before accesing a
shared variable.

Deadlocks

Happen quite often in real life and the proposed solutions are not
always logical: “When two trains approach each other at a crossing,
both shall come to a full stop and neither shall start up again until
the other has gone.” a pearl from Kansas legislation.
Deadlock jury.
Deadlock legislative body.

Deadlocks

Deadlocks prevent sets of concurrent
threads/processes from completing their tasks.
How does a deadlock occur a set of blocked
processes each holding a resource and waiting to
acquire a resource held by another process in the set.
Example

semaphores A and B, initialized to 1
P0 P1

wait (A); wait(B)
wait (B); wait(A)

Aim prevent or avoid deadlocks

Example of a deadlock

Traffic only in one direction.

Solution one car backs up (preempt resources and rollback).
Several cars may have to be backed up .
Starvation is possible.

System model

Resource types R1, R2, . . ., Rm (CPU cycles, memory space, I/O devices)
Each resource type Ri has Wi instances.
Resource access model:

request
use
release

Simultaneous conditions for deadlock

Mutual exclusion: only one process at a time can use a resource.
Hold and wait: a process holding at least one resource is waiting to acquire
additional resources held by other processes.
No preemption: a resource can be released only voluntarily by the process holding
it (presumably after that process has finished).
Circular wait: there exists a set {P0, P1, …, P0} of waiting processes such that P0 is
waiting for a resource that is held by P1, P1 is waiting for a resource that is held by
P2, …, Pn–1 is waiting for a resource that is held by Pn, and P0 is waiting for a
resource that is held by P0.

	COT 4600 Operating Systems Fall 2009
	Lecture 17
	Virtualization – relating physical with virtual objects
	Virtualization of the three abstractions. (1) Threads
	Virtualization of the three abstractions. (2) Virtual memory
	Virtualization of the three abstractions: (3) Bounded buffers
	Principle of least astonishment
	Thread coordination with a bounded buffer
	Implicit assumptions for the correctness of the implementation
	Race conditions
	One more pitfall of the previous implementation of bounded buffer
	Lock
	Deadlocks
	Deadlocks
	Example of a deadlock
	System model
	Simultaneous conditions for deadlock

