
COT 4600 Operating Systems Fall 2009

Dan C. Marinescu
Office: HEC 439 B
Office hours: Tu-Th 3:00-4:00 PM

22222

Lecture 20

Last time:
Sharing a processor among multiple threads
Implementation of the YIELD
Creating and terminating threads

Today:
Preemptive scheduling
Thread primitives for sequence coordination

Next Time:
Case studies

Thread scheduling policies
Non-preemptive scheduling a running thread releases the processor at
its own will. Not very likely to work in a greedy environment.
Cooperative scheduling a thread calls YIEALD periodically
Preemptive scheduling a thread is allowed to run for a time slot. It is
enforced by the thread manager working in concert with the interrupt
handler.

The interrupt handler should invoke the thread exception handler.
What if the interrupt handler running at the processor layer invokes directly the
thread? Imagine the following sequence:

Thread A acquires the thread_table_lock
An interrupt occurs
The YIELD call in the interrupt handler will attempt to acquire the thread_table_lock

Solution: the processor is shared between two threads:
The processor thread
The interrupt handler thread

Recall that threads have their individual address spaces so the scheduler
when allocating the processor to thread must also load the page map table
of the thread into the page map table register of the processor

Lecture 20 4

Lecture 20 5

Evolution of ideas regarding communication
among threads using a bounded buffer

1. Use locks did not address the busy waiting problem
2. YIELD based on voluntary release of the processor by individual

threads
3. Use WAIT (for an event) and NOTIFY (when the event occurs)

primitives .
4. Use AWAIT (for an event) and ADVANCE (when the event occurs)

Lecture 20 6

Lecture 6 7

1 2 N-1N-2

out

inRead from the buffer
location pointed by out

Write to the buffer
location pointed by outshared structure buffer

message instance message[N]
integer in initially 0
integer out initially 0
lock instance buffer_lock initially UNLOCKED

procedure SEND (buffer reference p, message instance msg)
ACQUIRE (p_buffer_lock)
while p.in – p.out = N do /* if buffer full wait

YIELD()
ACQUIRE (p_buffer_lock)

p.message [p.in modulo N] msg /* insert message into buffer cell
p.in p.in + 1 /* increment pointer to next free cell
RELEASE (p_buffer_lock)

procedure RECEIVE (buffer reference p)
ACQUIRE (p_buffer_lock)

while p.in = p.out do /* if buffer empty wait for message
RELEASE (p_buffer_lock)
YIELD()
ACQUIRE (p_buffer_lock)

msg p.message [p.in modulo N] /* copy message from buffer cell
p.out p.out + 1 /* increment pointer to next message
RELEASE (p_buffer_lock)
return msg

0 1

shared structure processor_table(2)
integer thread_id

shared structure thread_table(7)
integer topstack

 integer state
shared lock instance thread_table_lock

procedure GET_THREAD_ID() return processor_table(CPUID).thread_id

procedure YIELD()
ACQUIRE (thread_table_lock)

 ENTER_PROCESSOR_LAYER(GET_THREAD_ID())
 RELEASE(thread_table_lock)
return

procedure ENTER_PROCESSOR_LAYER(this_thread)
 thread_table(this_thread).state RUNNABLE
 thread_table(this_thread).topstack SP
 SCHEDULER()
return

procedure SCHEDULER()
 j _GET_THREAD_ID()

do
 j j+1 (mod 7)

while thread_table(j).state¬= RUNNABLE
 thread_table(j).state RUNNING
 processor_table(CPUID).thread_id j
 EXIT_PROCESSOR_LAYER(j)

return

procedure EXIT_PROCESSOR_LAYER(new)
 SP,-- thread_table(new).topstack
return

Lecture 20 11

Lecture 20 12

Lecture 19 13

Primitives for thread sequence coordination

YIELD requires the thread to periodically check if a condition has
occurred.
Basic idea use events and construct two before-or-after actions

WAIT(event_name) issued by the thread which can continue only after the
occurrence of the event event_name.
NOTIFY(event_name) search the thread_table to find a thread waiting for the
occurrence of the event event_name.

Lecture 6 14

This solution does not work

Lecture 20 16

The NOTIFY should always be sent after the WAIT. If the sender and the
receiver run on two different processor there could be a race condition for
the notempty event. The NOTIFY could be sent before the WAIT.
Tension between modularity and locks
Several possible solutions: AWAIT/ADVANCE, semaphores, etc

AWAIT - ADVANCE solution
A new state, WAITING and two before-or-after actions that take a
RUNNING thread into the WAITING state and back to RUNNABLE state.
eventcount variables with an integer value shared between threads and
the thread manager; they are like events but have a value.
A thread in the WAITING state waits for a particular value of the
eventcount
AWAIT(eventcount,value)

If eventcount >value the control is returned to the thread calling AWAIT and this
thread will continue execution
If eventcount ≤value the state of the thread calling AWAIT is changed to WAITING
and the thread is suspended.

ADVANCE(eventcount)
increments the eventcount by one then
searches the thread_table for threads waiting for this eventcount
if it finds a thread and the eventcount exceeds the value the thread is waiting for then
the state of the thread is changed to RUNNABLE

Lecture 20 17

Thread states and state transitions

Lecture 20 18

Solution for a single sender and multiple receivers

Lecture 20 19

Supporting multiple senders: the sequencer
Sequencer shared variable supporting thread sequence
coordination -it allows threads to be ordered and is manipulated
using two before-or-after actions.
TICKET(sequencer) returns a negative value which increases by
one at each call. Two concurrent threads calling TICKET on the
same sequencer will receive different values based upon the timing
of the call, the one calling first will receive a smaller value.
READ(sequencer) returns the current value of the sequencer

Lecture 20 20

Multiple sender solution; only the SEND must be
modified

Lecture 20 21

Semaphores
Introduced by Dijkstra in 1965
Does not require busy waiting
Semaphore S – integer variable
Two standard operations modify S: wait() and signal()

Originally called P() and V()
Less complicated
Can only be accessed via two indivisible (atomic) operations

wait (S) {
while S <= 0

; // no-op
S--;

}
signal (S) {

S++;
}

Semaphore as General Synchronization Tool

Counting semaphore – integer value can range over an unrestricted
domain
Binary semaphore mutex locks– integer value can range only
between 0 and 1; simpler to implement.
Can implement a counting semaphore S as a binary semaphore
Provides mutual exclusion

Semaphore S; // initialized to 1
wait (S);

Critical Section
signal (S);

Semaphore Implementation

Must guarantee that no two threads can execute wait () and
signal () on the same semaphore at the same time
Implementation becomes the critical section problem where the
wait and signal code are placed in the critical section.

Could now have busy waiting in critical section
implementation

But implementation code is short
Little busy waiting if critical section rarely occupied

Applications may spend lots of time in critical sections and
therefore this is not a good solution.

Semaphore Implementation with no Busy waiting

With each semaphore there is an associated waiting
queue. Each entry in a waiting queue has two data
items:

value (of type integer)
pointer to next record in the list

The two operations on semphore S, Wait(S) and
Signal(S) are implemented using:

block – place the thread invoking the operation on
the appropriate waiting queue.
wakeup – remove one of thread in the waiting queue
and place it in the ready queue.

Semaphore Implementation with no Busy waiting

Implementation of wait:
wait (S){

value--;
if (value < 0) {

add this thread to waiting queue
block(); }

}
Implementation of signal:

Signal (S){
value++;
if (value <= 0) {

remove a thread P from the waiting queue
wakeup(P); }

}

	COT 4600 Operating Systems Fall 2009
	Lecture 20
	Thread scheduling policies
	Evolution of ideas regarding communication among threads using a bounded buffer
	Primitives for thread sequence coordination
	This solution does not work
	AWAIT - ADVANCE solution
	Thread states and state transitions
	Solution for a single sender and multiple receivers
	Supporting multiple senders: the sequencer
	Multiple sender solution; only the SEND must be modified
	Semaphores
	Semaphore as General Synchronization Tool
	Semaphore Implementation
	Semaphore Implementation with no Busy waiting
	Semaphore Implementation with no Busy waiting

