
COT 4600 Operating Systems Fall 2009

Dan C. Marinescu
Office: HEC 439 B
Office hours: Tu-Th 3:00-4:00 PM

22222

Lecture 19

Last time:
Enforcing Modularity in Memory

Today:
Sharing a processor among multiple threads
Implementation of the YIELD
Creating and terminating threads
Preemptive scheduling

Next Time:
Thread primitives for sequence coordination

Virtualization of threads
Implemented by the operating system for the three abstractions:

1. Threads a thread is a virtual processor; a module in execution
1. Multiplexes a physical processor
2. The state of a thread: (1) the reference to the next computational step (the

Pc register) + (2) the environment (registers, stack, heap, current objects).
3. Sequence of operations:

1. Load the module’s text
2. Create a thread and lunch the execution of the module in that thread.

4. A module may have several threads.
5. The thread manager implements the thread abstraction.

1. Interrupts processed by the interrupt handler which interacts with the thread
manager

2. Exception interrupts caused by the running thread and processed by
exception handlers

3. Interrupt handlers run in the context of the OS while exception handlers run in the
context of interrupted thread.

Basic primitives for processor virtualization

Memory CREATE/DELETE_ADDRESS SPACE
ALLOCATE/FREE_BLOCK
MAP/UNMAP
UNMAP

Interpreter ALLOCATE_THREAD DESTROY_THREAD
EXIT_THREAD YIELD
AWAIT ADVANCE
TICKET
ACQUIRE RELEASE

Communication
channel

ALLOCATE/DEALLOCATE_BOUNDED_BUFFER
SEND/RECEIVE

The state of a thread and its associated virtual
address space

Lecture 18 6

Processor sharing
Possible because threads spend a significant percentage of their
lifetime waiting for external events.
Called:

Time-sharing
Processor multiplexing
Multiprogramming
Multitasking

The kernel must support a number of functions:
Creation and destruction of threads
Allocation of the processor to a ready to run thread
Handling of interrupts
Scheduling – deciding which one of the ready to run threads should be allocated
the processor

Lecture 19 7

Thread states and state transitions

Lecture 19 8

Switching the processor from one thread to another

Thread creation:
thread_id ALLOCATE_THREAD(starting_address_of_procedure, address_space_id);
YIELD function implemented by the kernel to allow a thread to wait for an
event.

Save the state of the current thread
Schedule another thread
Start running the new thread – dispatch the processor to the new thread

YIELD
cannot be implemented in a high level language, must be implemented in the machine
language.
can be called from the environment of the thread, e.g., C, C++, Java
allows several threads running on the same processor to wait for a lock. It replaces the
busy wait we have used before.

Lecture 19 9

Lecture 6 10

1 2 N-1N-2

out

inRead from the buffer
location pointed by out

Write to the buffer
location pointed by out

shared structure buffer
 message instance message[N]

integer in initially 0
integer out initially 0

 lock instance buffer_lock initially UNLOCKED

procedure SEND (buffer reference p, message instance msg)
ACQUIRE (p_buffer_lock)
while p.in – p.out = N do /* if buffer full wait

 RELEASE (p_buffer_lock)
 YIELD()
 ACQUIRE (p_buffer_lock)
 p.message [p.in modulo N] msg /* insert message into buffer cell
 p.in p.in + 1 /* increment pointer to next free cell
 RELEASE (p_buffer_lock)

procedure RECEIVE (buffer reference p)
ACQUIRE (p_buffer_lock)

while p.in = p.out do /* if buffer empty wait for message
 RELEASE (p_buffer_lock)
 YIELD()
 ACQUIRE (p_buffer_lock)
 msg p.message [p.in modulo N] /* copy message from buffer cell
 p.out p.out + 1 /* increment pointer to next message

return msg

0 1

Implementation of YIELD

Lecture 19 12

shared structure processor_table(7)
integer thread_id

shared structure thread_table(7)
integer topstack

 integer state
shared lock instance thread_table_lock

procedure GET_THREAD_ID() return processor_table(CPUID).thread_id

procedure YIELD()
ACQUIRE (thread_table_lock)

 ENTER_PROCESSOR_LAYER(GET_THREAD_ID())
 RELEASE(thread_table_lock)
return

procedure ENTER_PROCESSOR_LAYER(this_thread)
 thread_table(this_thread).state RUNNABLE
 thread_table(this_thread).topstack SP
 SCHEDULER()
return

procedure SCHEDULER()
 j _GET_THREAD_ID()

do
 j j+1 (mod 7)
 RELEASE(thread_table_lock)

while thread_table(j).state¬= RUNNABLE
 thread_table(j).state RUNNING
 processor_table(CPUID).thread_id j
 EXIT_PROCESSOR_LAYER(j)

return

procedure EXIT_PROCESSOR_LAYER(new)
 SP,-- thread_table(new).topstack
return

More about thread creation and termination
What if want to create/terminate threads dynamically we have to:

Allow a tread to self-destroy and clean-up -> EXIT_THREAD
Allow a thread to terminate another thread of the same application DESTRY_THREAD

What if no thread is able to run
create a dummy thread for each processor called a processor_thread which is
scheduled to run when no other thread is available
the processor_thread runs in the thread layer
the SCHEDULER runs in the processor layer
The procedure followed when a kernel starts

Procedure RUN_PROCESSORS()

for each processor do
allocate stack and setup processor thread /*allocation of the stack done at processor layer
shutdown FALSE

SCHEDULER()
deallocate processor_thread stack /*deallocation of the stack done at processor layer

halt processor
Lecture 19 14

Switching threads with dynamic thread creation

Switching from one user thread to another requires two steps
Switch from the thread releasing the processor to the processor thread
Switch from the processor thread to the new thread which is going to have the
control of the processor
The last step requires the SCHEDULER to circle through the thread_table until
a thread ready to run is found

The boundary between user layer threads and processor layer
thread is crossed twice
Example: switch from thread 1 to thread 6 using

YIELD
ENTER_PROCESSOR_LAYER
EXIT_PROCESSOR_LAYER

Lecture 6 15

Lecture 19 16

Lecture 19 17

Lecture 19 18

	COT 4600 Operating Systems Fall 2009
	Lecture 19
	Virtualization of threads
	Basic primitives for processor virtualization
	The state of a thread and its associated virtual address space
	 Processor sharing
	Thread states and state transitions
	Switching the processor from one thread to another
	Implementation of YIELD
	More about thread creation and termination
	Switching threads with dynamic thread creation

