
COT 4600 Operating Systems Fall 2009

Dan C. Marinescu
Office: HEC 439 B
Office hours: Tu-Th 3:00-4:00 PM

222222

Lecture 25
Attention: project phase 4 and HW 6 – due Tuesday
November 24

Final exam – Thursday December 10 4-6:50 PM

Last time:
Multi-level memories
Memory characterization
Multilevel memories management using virtual memory
Adding multi-level memory management to virtual memory

Today:
Scheduling

Next Time:
Network properties (Chapter 7) - available online from the publisher

of the textbook

Scheduling

The process of allocating resource e.g., CPU cycles, to threads/processes.
Distinguish

Policies
Mechanisms to implement policies

Scheduling problems have evolved in time:
Early on: emphasis on CPU scheduling
Now: more interest in transaction processing and I/O optimization

Scheduling decisions are made at different levels of abstraction and it is
not always easy to mediate.

Example: an overloaded transaction processing system

Incoming transaction are queued in a buffer which may fill up;
The interrupt handler is constantly invoked as dropped requests are re-
issued;
The transaction processing thread has no chance to empty the buffer;
Solution: when the buffer is full disable the interrupts caused by incoming
transactions and allow the transaction processing thread to run.

Scheduling objectives

Performance metrics:
CPU Utilization Fraction of time CPU does useful work over total time
Throughput Number of jobs finished per unit of time
Turnaround time Time spent by a job in the system
Response time Time to get the results
Waiting time Time waiting to start processing

All these are random variables we are interested in averages!!
The objectives - system managers (M) and users (U):

Maximize CPU utilization M
Maximize throughput M
Minimize turnaround time U
Minimize waiting time U
Minimize response time U

CPU burst

CPU burst the time required by the thread/process to execute

Scheduling policies

First-Come First-Serve (FCFS)
Shortest Job First (SJF)
Round Robin (RR)
Preemptive/non-preemptive scheduling

First-Come, First-Served (FCFS)

Thread Burst Time
P1 24
P2 3
P3 3

Processes arrive in the order: P1 P2 P3
Gantt Chart for the schedule:

Waiting time for P1 = 0; P2 = 24; P3 = 27
Average waiting time: (0 + 24 + 27)/3 = 17
Convoy effect short process behind long process

P1 P2 P3

24 27 300

FCFS Scheduling (Cont’d.)

Now threads arrive in the order: P2 P3 P1

Gantt chart:

Waiting time for P1 = 6; P2 = 0; P3 = 3
Average waiting time: (6 + 0 + 3)/3 = 3
Much better!!

P1P3P2

63 300

Shortest-Job-First (SJF)

Use the length of the next CPU burst to schedule the thread/process
with the shortest time.
SJF is optimal minimum average waiting time for a given set of
threads/processes
Two schemes:

Non-preemptive the thread/process cannot be preempted until
completes its CPU burst
Preemptive if a new thread/process arrives with CPU burst
length less than remaining time of current executing process,
preempt. known as Shortest-Remaining-Time-First (SRTF)

Example of non-preemptive SJF

Thread Arrival Time Burst Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

SJF (non-preemptive)

Average waiting time = (0 + 6 + 3 + 7)/4 = 4

P1 P3 P2

73 160

P4

8 12

Example of Shortest-Remaining-Time-First (SRTF)
(Preemptive SJF)

Thread Arrival Time Burst Time
P1 0.0 7
P2 2.0 4
P3 4.0 1
P4 5.0 4

Shortest-Remaining-Time-First

Average waiting time = (9 + 1 + 0 +2)/4 = 3

P1 P3P2

42 110

P4

5 7

P2 P1

16

Round Robin (RR)

Each process gets a small unit of CPU time (time quantum),
usually 10-100 milliseconds. After this time has elapsed, the
thread/process is preempted and added to the end of the ready
queue.
If there are n threads/processes in the ready queue and the time
quantum is q, then each thread/process gets 1/n of the CPU time
in chunks of at most q time units at once. No thread/process waits
more than (n-1)q time units.
Performance

q large ⇒ FIFO
q small ⇒ q must be large with respect to context switch,
otherwise overhead is too high

RR with time slice q = 20

Thread Burst Time
P1 53
P2 17
P3 68
P4 24

Typically, higher average turnaround than SJF, but better response

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

Time slice (quantum) and context switch time

Turnaround time function of time quantum

Job Arrival time Work Start time Finish time Wait time
till start

Time in
system

A 0 3 0 3 0 3

B 1 5 3 3 + 5 = 8 3 – 1 = 2 8 – 1 = 7
C 3 2 8 8 + 2 = 10 8 – 3 = 5 10 – 3 = 7

A 0 3 0 3 0 3

B 1 5 5 5 + 5 = 10 4 10 – 1 = 9
C 3 2 3 3 + 2 = 5 0 5 – 3 = 2

A 0 3 0 6 0 6 – 0 = 6

B 1 5 1 10 1 – 1 = 0 10 – 1 = 9
C 3 2 5 8 5 – 3 = 2 8 – 3 = 5

Scheduling
policy

Average waiting time
till the job started

Average time in
system

FCFS 7/3 17/3

SJF 4/3 14/3

RR 3/3 20/3

Priority scheduling

Each thread/process has a priority and the one with the highest
priority (smallest integer ≡ highest priority) is scheduled next.

Preemptive
Non-preemptive

SJF is a priority scheduling where priority is the predicted next CPU
burst time
Problem Starvation – low priority threads/processes may never
execute
Solution to starvation Aging – as time progresses increase the
priority of the thread/process

Priority my be computed dynamically

Priority inversion
A lower priority thread/process prevents a higher priority one from running.
T3 has the highest priority, T1 has the lowest priority; T1 and T3 share a lock.
T1 acquires the lock, then it is suspended when T3 starts.
Eventually T3 requests the lock and it is suspended waiting for T1 to release the
lock.
T2 has higher priority than T1 and runs; neither T3 nor T1 can run; T1 due to its low
priority, T3 because it needs the lock help by T1.
Allow a low priority thread holding a lock to run with the higher priority of the thread
which requests the lock

Estimating the length of next CPU burst

Done using the length of previous CPU bursts, using exponential averaging

10 , 3.
burst CPUnext for the valuepredicted 2.

burst CPU oflength actual 1.

1

≤≤
=

=

+

αα
τ n

th
n nt

() .11 nnn t ταατ −+==

Exponential averaging

α =0
τn+1 = τn
Recent history does not count

α =1
τn+1 = α tn
Only the actual last CPU burst counts

If we expand the formula, we get:
τn+1 = α tn+(1 - α)α tn -1 + …

+(1 - α)j α tn -j + …
+(1 - α)n +1 τ0

Since both α and (1 - α) are less than or equal to 1, each successive
term has less weight than its predecessor

Predicting the length of the next CPU burst

Multilevel queue

Ready queue is partitioned into separate queues each with its own
scheduling algorithm :

foreground (interactive) RR
background (batch) FCFS

Scheduling between the queues
Fixed priority scheduling - (i.e., serve all from foreground then
from background). Possibility of starvation.
Time slice – each queue gets a certain amount of CPU time
which it can schedule amongst its processes; i.e.,

80% to foreground in RR
20% to background in FCFS

Multilevel Queue Scheduling

Multilevel feedback queue

A process can move between the various queues; aging can be
implemented this way
Multilevel-feedback-queue scheduler characterized by:

number of queues
scheduling algorithms for each queue
strategy when to upgrade/demote a process
strategy to decide the queue a process will enter when it needs
service

Example of a multilevel feedback queue exam

Three queues:
Q0 – RR with time quantum 8 milliseconds
Q1 – RR time quantum 16 milliseconds
Q2 – FCFS

Scheduling
A new job enters queue Q0 which is served FCFS. When it gains CPU,
job receives 8 milliseconds. If it does not finish in 8 milliseconds, job is
moved to queue Q1.
At Q1 job is again served FCFS and receives 16 additional milliseconds.
If it still does not complete, it is preempted and moved to queue Q2.

Multilevel Feedback Queues

Unix scheduler

The higher the number quantifying the priority the lower the actual
process priority.
Priority = (recent CPU usage)/2 + base
Recent CPU usage how often the process has used the CPU since
the last time priorities were calculated.
Does this strategy raises or lowers the priority of a CPU-bound
processes?
Example:

base = 60
Recent CPU usage: P1 =40, P2 =18, P3 = 10

	COT 4600 Operating Systems Fall 2009
	Lecture 25
	Scheduling
	Example: an overloaded transaction processing system
	Scheduling objectives
	CPU burst
	Scheduling policies
	First-Come, First-Served (FCFS)
	FCFS Scheduling (Cont’d.)
	Shortest-Job-First (SJF)
	Example of non-preemptive SJF
	Example of Shortest-Remaining-Time-First (SRTF) (Preemptive SJF)
	Round Robin (RR)
	RR with time slice q = 20
	Time slice (quantum) and context switch time
	Turnaround time function of time quantum
	Slide Number 17
	Slide Number 18
	Priority scheduling
	Priority inversion
	Estimating the length of next CPU burst
	Exponential averaging
	Predicting the length of the next CPU burst
	Multilevel queue
	Multilevel Queue Scheduling
	Multilevel feedback queue
	Example of a multilevel feedback queue exam
	Multilevel Feedback Queues
	Unix scheduler

