
COT 4600 Operating Systems Fall 2009

Dan C. Marinescu
Office: HEC 439 B
Office hours: Tu-Th 3:00-4:00 PM

22222

Lecture 21

Last time:
Preemptive scheduling
Thread primitives for sequence coordination

Today:
Implementation of AWAIT, ADVANCE, TICKET, and READ
Polling and interrupts
Evolution of the Intel x86 architecture
Virtual Machines

Next Time:
Performance Metrics (Chapter 5)

Evolution of ideas regarding communication
among threads using a bounded buffer

1. Use locks did not address the busy waiting problem
2. YIELD based on voluntary release of the processor by individual

threads
3. Use WAIT (for an event) and NOTIFY (when the event occurs)

primitives .
4. Use AWAIT (for an event) and ADVANCE (when the event occurs)

Lecture 21 3

shared structure processor_table(2)
integer thread_id

shared structure thread_table(7)
integer topstack

 integer state
shared lock instance thread_table_lock

procedure GET_THREAD_ID() return processor_table(CPUID).thread_id

procedure YIELD()
ACQUIRE (thread_table_lock)

 ENTER_PROCESSOR_LAYER(GET_THREAD_ID())
 RELEASE(thread_table_lock)
return

procedure ENTER_PROCESSOR_LAYER(this_thread)
 thread_table(this_thread).state RUNNABLE
 thread_table(this_thread).topstack SP
 SCHEDULER()
return

procedure SCHEDULER()
 j _GET_THREAD_ID()

do
 j j+1 (mod 7)

while thread_table(j).state¬= RUNNABLE
 thread_table(j).state RUNNING
 processor_table(CPUID).thread_id j
 EXIT_PROCESSOR_LAYER(j)

return

procedure EXIT_PROCESSOR_LAYER(new)
 SP,-- thread_table(new).topstack
return

Lecture 21 5

Primitives for thread sequence coordination

YIELD requires the thread to periodically check if a condition has
occurred.
Basic idea use events and construct two before-or-after actions

WAIT(event_name) issued by the thread which can continue only after the
occurrence of the event event_name.
NOTIFY(event_name) search the thread_table to find a thread waiting for the
occurrence of the event event_name.

Lecture 21 6

This solution does not work

Lecture 21 8

The NOTIFY should always be sent after the WAIT. If the sender and the
receiver run on two different processor there could be a race condition for
the notempty event. The NOTIFY could be sent before the WAIT.
Tension between modularity and locks
Several possible solutions: AWAIT/ADVANCE, semaphores, etc

AWAIT - ADVANCE solution
A new state, WAITING and two before-or-after actions that take a
RUNNING thread into the WAITING state and back to RUNNABLE state.
eventcount variables with an integer value shared between threads and
the thread manager; they are like events but have a value.
A thread in the WAITING state waits for a particular value of the
eventcount
AWAIT(eventcount,value)

If eventcount >value the control is returned to the thread calling AWAIT and this
thread will continue execution
If eventcount ≤value the state of the thread calling AWAIT is changed to WAITING
and the thread is suspended.

ADVANCE(eventcount)
increments the eventcount by one then
searches the thread_table for threads waiting for this eventcount
if it finds a thread and the eventcount exceeds the value the thread is waiting for then
the state of the thread is changed to RUNNABLE

Lecture 21 9

Thread states and state transitions

Lecture 20 10

Solution for a single sender and multiple receivers

Lecture 20 11

Supporting multiple senders: the sequencer
Sequencer shared variable supporting thread sequence
coordination -it allows threads to be ordered and is manipulated
using two before-or-after actions.
TICKET(sequencer) returns a negative value which increases by
one at each call. Two concurrent threads calling TICKET on the
same sequencer will receive different values based upon the timing
of the call, the one calling first will receive a smaller value.
READ(sequencer) returns the current value of the sequencer

Lecture 20 12

Multiple sender solution; only the SEND must be
modified

Lecture 21 13

structure sequencer
long integer ticket

procedure TICKET(sequence reference s)
ACQUIRE (thread_table_lock)

 t s.ticket
 s.ticket s.ticket + 1
 RELEASE(thread_table_lock)
return t

procedure READ(eventcount reference event)
ACQUIRE (thread_table_lock)

 e event.count
 RELEASE(thread_table_lock)

return

Polling and interrupts
Polling periodically checking the status of a subsystem.

How often should the polling be done?
Too frequently large overhead
After a large time interval the system will appear non-responsive

Interrupts
could be implemented in hardware as polling before executing the next
instruction the processor checks an “interrupt” bit implemented as a flip-flop

If the bit is ON invoke the interrupt handler instead of executing the next
instruction
Multiple types of interrupts multiple “interrupts” bits checked based upon the
priority of the interrupt.

Some architectures allow the interrupts to occur durin the execution of an
instruction

The interrupt handler should be short and very carefully written.
Interrupts of lower priority could be masked.

Evolution of modularity for the Intel architecture x86

The address space size determined by the number of address bits:
24 for 80286 a 16 bit processor modularity enforced through segmentation
32 for 80386 a 32 bit processor

each segment could have up to 232 bytes
within each segment support for virtual memory

Backward compatibility

0

10

20

30

40

50

60

W
ind

ow
s 3

.1
(19

92
)

W
ind

ow
s N

T (1
99

2)
Sola

ris
 (1

99
8)

W
ind

ow
s 9

5
W

ind
ow

s 9
8

W
ind

ow
s N

T 5.
0 (

19
98

)

Red
Hat

Lin
ux

 6.
2 (

20
00

)

Red
Hat

Lin
ux

 7.
1 (

20
01

)
W

ind
ow

s X
P

Vist
a

The increase in the number of lines of operating
systems source code (millions)

Virtual machines

First commercial product IBM VM 370 originally developed as CP-67
Advantages:

One could run multiple guest operating systems on the same machine
An error in one guest operating system does not bring the machine down
An ideal environment for developing operating systems

Kernel Mode

User Mode

FirefoxInternet
Explorer X WindowsWord

Virtual Machine Layer

Processor Layer

Guest OS1

Processor A Processor B

ID
SP
PC

PMAP

ID
SP
PC

PMAP

ID
SP
PC

PMAP

ID
SP
PC

PMAP

ID
SP
PC

PMAP

ID.1
SP
PC

PMAP

Guest OS2 Guest OSn

ID.n
SP
PC

PMAP

Thread of OS1

Thread Layer
Thread of OSn

Lecture 21 23

	COT 4600 Operating Systems Fall 2009
	Lecture 21
	Evolution of ideas regarding communication among threads using a bounded buffer
	Primitives for thread sequence coordination
	This solution does not work
	AWAIT - ADVANCE solution
	Thread states and state transitions
	Solution for a single sender and multiple receivers
	Supporting multiple senders: the sequencer
	Multiple sender solution; only the SEND must be modified
	Polling and interrupts
	Evolution of modularity for the Intel architecture x86
	The increase in the number of lines of operating systems source code (millions)
	Virtual machines

