
COT 4600 Operating Systems Fall 2009

Dan C. Marinescu
Office: HEC 439 B
Office hours: Tu-Th 3:00-4:00 PM

222

Lecture 9

Last time:
Case study: the Unix file system

Today:
Modular sharing
Metadata and Name Overloading
Addresses

Next Time:
User-friendly names
Lifetime of names
Case study: URL

3

Unix File System

Unix file system – hierarchical data organization:
blocks files directories file systems

the objects:
files – linear arrays of blocks of data; each file has a cursor
giving the current position
directories – collections of files; tree structure
metadata - useful information about the file, not contained in
the file (e.g., owner, access modes, last modified date,
length, etc.)

supports:
creation, deletion, renaming of files and directories
reading data from and writing data to a file
reading and writing metadata describing a file

4

API for the Unix File System
OPEN(name, flags, model) connect to a file

Open an existing file called name, or
Create a new file with permissions set to mode if flags is set.
Set the file pointer (cursor) to 0.
Return the file descriptor (fd).

CLOSE(fd) disconnect from a file
Delete file descriptor fd.

READ(fd, buf,n) read from file
Read n bytes from file fd into buf; start at the current cursor position and update the
file cursor (cursor = cursor + n).

WRITE(fd, buf,n) write to file
Write n bytes to the file fd from buf; start at the current cursor position and update the
file cursor (cursor = cursor + n).

SEEK(fd, offset,whence) move cursor of file
Set the cursor position of file fd to offset from the position specified by whence
(beginning, end, current position)

5

API for the Unix File System (cont’d)
FSYNC(fd) make all changes to file fd durable.
STAT(name) read metadata
CHMOD, CHOWN change access mode/ownership
RENAME(from_name,to_name) change file name
LINK(name, link_name) create a hard link
UNLINK(name) remove name from directory
SYMLINK(name, link_name) create a symbolic link
MKDIR(name) create directory name
RMDIR(name) delete directory name
CHDIR(name) change current directory to name
CHROOT Change the default root directory name
MOUNT(name,device) mount the file system name onto device
UNMOUNT(name) unmount file system name

6

Layers

Unix file system uses a number of layers to hide the
implementation of the storage abstraction from the users.

User-oriented names
1. Symbolic link layer integrates multiple file systems with symbolic
names
2. Absolute path name layer provides a root for the naming hierarchies
3. Path name layer organizes files into naming hierarchies

Machine-user interface
4. File name layer Supplies human-oriented names for files

Machine-oriented names
5. Inode number layer provides machine-oriented names for files
6. File layer organizes blocks into files
7. Block layer Provides the physical address of data blocks

7

7. Block layer
The storage device (disk) a linear array of cells/blocks
Block fixed-size allocation unit (e.g., 512 bytes, 2,048 bytes);
occupies several disk sectors.

Block name integer from a compact set, the offset from the
beginning of the device
Boot block usually contains a boot program; Has a well-known
name, 0.
Super block provides a description of the layout of the file system
on the disk. Has a well-known name,1.
Bitmap to keep track of free blocks and of defective blocks.

8

Figure 2.20

Disk layout

9

Figure 2.22

10

6. File layer
A file consists of multiple blocks.
inode (index node) container for the metadata about the file; context for naming
the blocks of the file
structure inode

integer block_number[N] // the number of the block in the file
integer size // file size in bytes

Name mapping algorithm:
procedure INDEX_TO_BLOCK_NUMBER (inode instance i, integer index) returns integer

return i_block_numbers[index]
Indirect blocks blocks that contain block numbers rather than data to accommodate
large file.
Doubly indirect blocks blocks that contain block numbers of indirect blocks
Example: UNIX V6

the first N entries in i_block_numbers are indirect blocks and the N+1 is a doubly indirect block
the block size is 512 bytes;
an index consists of 2 bytes an indirect block may contain 256 block numbers
the maximum file size is: (N-1) x 256 + 256 x 256 blocks

11

5. Inode number layer
inodes are named and passed around by name (inode number)
inode numbers are a compact set
inode_table

maps inode names to the starting block of the inode
stored at a known-location (e.g., at the beginning of the storage device)

Inode manipulation functions: allocate, dealocate, add to list of free inodes,
remove from list of free inodes
Name mapping algorithm procedure that returns the block that contains
the byte at offset in a file identified by inode_number:

procedure INODE_NUMBER_TO_BLOCK(integer offset, integer inode _number) returns block
inode instance i INODE_NUMBER_TO_INODE [inode,number]

offset_in_block offset/blocksize
b_number INDEX_TO_BLOCK_NUMBER(i, offset_in_block)
return BLOCK_NUMBER_TO_BLOCK [b_number]

12

4. File name layer

Maps human-oriented names to machine-oriented names.
Hides the metadata required by file management from the user.
Directory

durable object providing the context for binding between a file name
and an inode number
it is a file
the inode data structure is extended with a type field to indicate if the
inode is for a file or for a directory.

To create a file:
allocate an inode
initialize the metadata for the file
bind the file name to the inode number

13

File name lookup
The lookup procedure reads the blocks containing the data for
directory dir searching for a file called filename and return the inode
number for the file is it finds the filename

procedure LOOKUP (character string filename, integer dir) returns integer
block instance b
inode instance i INODE_NUMBER_TO_INODE [dir]
if i.type ne then return FAILURE
for offset from 0 to i.size -1 do

b INODE_NUMBER_TO_BLOCK (offset,dir)
return BLOCK_NUMBER_TO_BLOCK [b_number]
if STRING_MATCH (filename, b) then

return INODE_NUMBER (filename,b)
offset offset +BLOCKSIZE

return FAILURE

14

3. Path name layer

Directories are hierarchical collections of files.
The path name layer structure for naming files in directories
The name resolution algorithm:

procedure PATH_TO_INODE_NUMBER (character string path, integer dir) returns integer
if (PLAIN_NAME(path) return NAME_TO_INODE_NUMBER(path,dir)
else

dir LOOKUP (FIRST(path),dir)
path REST(path)

return PATH_TO_INODE_NUMBER (path,dir)

15

Links

link synonym allowing the user to use in the context of the current
directory a symbolic name instead of a long path name.
This requires binding in a different context; it does not require any
extension of the naming scheme.
Example:
link(“/usr/applications/project/bin/programA”,”progA”
if the current directory is alpha (with inode # 113) then the link directive will
add to the directory “/usr/applications/project/bin” a new entry (progA,
113)
The unlink removes the link. Removal of the last link to a file also
removes the file.

16

2. Absolute path name layer
UNIX shell starts execution with the working directory set to the
inode number of user’s home directory.
To allow users to share files with one another the UNIX file system
creates a context available to every user. This root directory binds a
name to to each user’s top-level directory

17

1. Symbolic link layer

Allows a user to operate on multiple file systems
mount(“dev/fd1”, “/flash”).

18

Practical design of naming schemes
Transition from abstract models to practical ones.
Name conflict multiple modules have the same name.
How to avoid name conflicts when modules are developed
independently often by different individuals?
The theoretical model tells us that we must specify a context for
name resolution; but this is not so straightforward!!

Example: there are two versions of module A; one is used by module B
and the other by module C. Conflict when module B uses C.

19

Figure 3.1

Single context ambiguity

WORD_PROCESSOR (INITIALIZE,SPELL_CHECK)
SPELL_CHECH (INITIALIZE) (but a different version of it)

20

Figure 3.3

Two distinct contexts how does the interpreter choose the context?
It needs a basis for the contexts.

21

Figure 3.4

Add a context reference to each module telling the interpreter which
context to use for that module? Not feasible to tinker with someone
else’s modules.

22

Figure 3.5

Have separate contexts but establish a link between them; the link
points to the new context for the shared object

23

An elegant solution

We need a systematic rather than ad-hoc ways to deal with the
problem because programs contain many references to objects.
Solution associate the name of the object not with the object itself
but with a structure consisting of pairs (original object, context).
Some programming languages implement such a structure called
closure and use static references.
File systems rarely apply this solutions.

24

Metadata and name overloading
Metadata information about an object that

is useful to know about the object but cannot be found inside the object
may be changed without changing the object, e.g., the last date a file was referenced.

Examples:
A user-friendly name; e.g., quadratic_solver /user/local/bin/ linpack/quad.exe
The type of an object: e.g., Lecture9.ppt

Where to place metadata?
In the same place with the data; e.g., the Unix file system stores metadata in inodes
In a separate place process control block stored in the kernel space.
Overloading the name e.g., Lecture9.ppt

Overloading adding metadata to a name
Contradicts the principle that names should only be used to reference objects
Creates a tension between the need to keep the name unchanged and the need to
modify overloading information.

Names and overloading
Pure names names with no overloading.
Fragile names overloaded names which violate the idea of
modular design. E.g.., adding location information on the file name.
Opaque name to a module the name has no overloading the
module knows how to interpret.

A name may pass through several modules before reaching a module which
knows how to interpret it.

Lecture 9 25

Addresses
Address

A name used to locate an object
Not a pure name it is overloaded with metadata
Parsing an address provides a guide to the location

Often chosen from a compact set of integers
Does address adjacency correspond to physical adjacency?

True in some cases; e.g., sectors on a disk
False in other cases; e.g., the area code of a phone number

Can we apply arithmetic operations to addresses?
Yes in some cases; e.g., memory references
No in other cases; e.g; telephone numbers (actually the phone numbers do
not forms a dense set!!)

Remember that overloading the causes name fragility

Lecture 9 26

Changing addresses
Changing addresses not hidden by a level of indirection is tricky.
Solutions

1. Search for all addresses and change them
2. Make each user do a search for the object and if the search returns “object not

found” detect that the address has been changed and supply the new address.
3. If possible bind the object to both the old and the new name
4. If the name is bond to an active agent place a forwarding scheme to the old

address.

The optimal solution hide an address under a level of indirection.
We’ll discuss DNS, domain name services that map host names to

IP addresses.

Lecture 9 27

Unique names
Problems arise when names must be generated at a high rate., e.g.,
for online banking transactions (billions a week).
Danger of name collision.
Solution

Using a fine timestamp read a fine digital clock (say with a resolution of
microseconds) and convert the binary representation of the timestamp to a
string of characters.
Use a random number generator with a very large name space.
For objects with a binary representation (e.g., files, images) use the object itself.
Hashing algorithms such as SHA (Secure Hash Algorithm) avoid the problem of
long names. HSA produces names of fixed length.

Lecture 9 28

Hierarchical naming schemes
Think about naming in the Internet with hundred millions of hosts.

Unfeasible with a central authority.
Domain names
E.g., boticelli.cs.ucf.edu

How to relate a hierarchical naming scheme used by Internet with
the flat naming schemes used for MAC addresses?

MAC addresses do not have any overloading
ARP
RARP
DHCP

Lecture 9 29

Application, Transport, Network, and Data Link Layer
Protocols

Application Layer

Transport Layer

Network Layer

HTTP FTP TELNET

TCP UDP

IP

NFS RPC DNS SNTP

Data Link Layer

Ethernet WirelessSatellite

Dynamic IP address assignment -DHCP

	COT 4600 Operating Systems Fall 2009
	Lecture 9
	Unix File System
	API for the Unix File System
	API for the Unix File System (cont’d)
	Layers
	7. Block layer
	Disk layout
	6. File layer
	5. Inode number layer
	4. File name layer
	File name lookup
	3. Path name layer
	Links
	2. Absolute path name layer
	 1. Symbolic link layer
	Practical design of naming schemes
	Single context  ambiguity ��WORD_PROCESSOR  (INITIALIZE,SPELL_CHECK)�SPELL_CHECH (INITIALIZE) (but a different version of i
	Two distinct contexts  how does the interpreter choose the context?�It needs a basis for the contexts.
	Add a context reference to each module telling the interpreter which context to use for that module? Not feasible to tinker wi
	Have separate contexts but establish a link between them; the link points to the new context for the shared object
	An elegant solution
	Metadata and name overloading
	Names and overloading
	Addresses
	Changing addresses
	Unique names
	Hierarchical naming schemes
	Application, Transport, Network, and Data Link Layer Protocols
	Dynamic IP address assignment -DHCP

