- 1. (10pt) The vector equation of a curve C is $\vec{r}(t) = \langle 3\cos t, 3\sin t, 4t \rangle$.
 - (a) Find the arc length between the points P(3,0,0) and $Q(3,0,8\pi)$ on the curve C.

(b) Find the coordinates of a point R other than P(3,0,0) on the curve C, such that the arc length between R and Q is the same as the arc length between P and Q.

- 2. (10pt) $f(x, y, z) = xe^y + ye^z + ze^x$.
 - (a) (3pt) Find the gradient of f(x, y, z).
 - (b) (4pt) Find the directional derivative of f at the point (0,0,0) in the direction of (0,2,1).

(c) (3pt) Find the maximum rate of change of f at the point (0,0,0). In which direction does it occur?

3. (10pt) Find the local maximum and minimum values and saddle points of $f(x,y)=x^2-xy+y^2+9x-6y+10$, if they exist.

4. (10pt) Sketch the region of integral and calculate the iterated integral by first reversing the order of integration.

$$\int_0^3 \int_{\sqrt{y/3}}^1 e^{x^3} \, dx \, dy$$

5. (10pt) Find the volume of the solid bounded by the two paraboloids $z=3x^2+3y^2$ and $z=4-x^2-y^2$.

6. (10pt) Find the volume of the solid that lies within the sphere $x^2 + y^2 + z^2 = 4$, above the xy-plane and below the cone $z = \sqrt{x^2 + y^2}$.

7. (10pt) Use Stokes' theorem to evaluate $\iint_S \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F}(x,y,z) = x^2 z^2 \mathbf{i} + y^2 z^2 \mathbf{j} + xyz\mathbf{k}$ and S is the part of the paraboloid $z = x^2 + y^2$ that lies inside the cylinder $x^2 + y^2 = 1$, oriented upward.

(Hint: Stokes' theorem: $\int_C \mathbf{F} \cdot d\mathbf{r} = \iint_S \operatorname{curl} \mathbf{F} \cdot d\mathbf{S}$. The boundary of S (i.e. the curve C) is the intersection of the paraboloid with the the cylinder.)

8. (10pt) Evaluate $\iint_S \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F} = x\mathbf{i} + y\mathbf{j} + \mathbf{k}$ and S is the part of the cone $z^2 = x^2 + y^2$ that lies between the planes z = 1 and z = 2, oriented upward.

9. (10pt) Find the area of part of the surface 3x + 4y + z = 6 that lies in the first octant.

10. $(10pt)\mathbf{F}(x,y) = x^2\mathbf{i} + y^2\mathbf{j}$.

(a) Show that F is conservative and find f such that $\nabla f(x,y) = \mathbf{F}(x,y)$.

(b) Use the result in part (a) and the Fundamental Theorem for line integral to calculate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where C is the arc of the parabola $y=2x^2$ from (0,0) to (1,2).