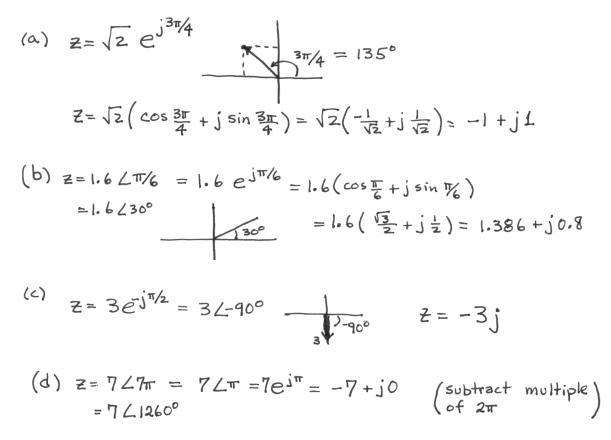

PROBLEM A.1:

(C)
$$Z = -3 - j4$$

 $r = \sqrt{3^2 + 4^2} = 5$ 52-126.87°
 $\Theta = Tan^{-1} \left(\frac{-4}{-3}\right) = -126.87^{\circ}$


Convert to radians: $-126.87 \left(\frac{\pi}{180}\right) = -2.21 = -0.705\pi$ $Z = 5e^{-j} = 5e^{-j^{2.21}}$

(d)

$$Z = (0, -1)$$

 $= -90^{\circ} = -\pi/2$ rads.
 $Z = 1e^{j\pi/2}$

McClellan, Schafer and Yoder, Signal Processing First, ISBN 0-13-065562-7. Pearson Prentice Hall, Inc. Upper Saddle River, NJ 07458. © 2003

PROBLEM A.2:

McClellan, Schafer and Yoder, Signal Processing First, ISBN 0-13-065562-7. Pearson Prentice Hall, Inc. Upper Saddle River, NJ 07458. © 2003

PROBLEM A.3:

(a)
$$j^{3} = j \cdot j^{2} = j(-i) = -j = 0 - j$$

(b)
$$e^{j(\pi + 2\pi m)} = e^{j\pi} e^{j2\pi m} = (-1)(1) = -1 = -1 + j0$$

or;
 $= (\cos(\pi) + j\sin(\pi))(\cos(2\pi m) + j\sin(2\pi m))$
 $= (-1 + j0)(1 + j0)$
 $= (-1)(1) = -1 = -1 + j0$

(c)
$$j^{2n} = (j^2)^n = (-1)^n = \begin{cases} +1 & \text{if } n \text{ is even} \\ -1 & \text{if } n \text{ is odd} \end{cases}$$

(d)
$$j^{1/2} = (e^{j\pi/2})^{1/2} = e^{j\pi/4} = \sqrt{\frac{1}{2}} + j\sqrt{\frac{2}{2}}$$

But there is a second solution:
 $j^{1/2} = (e^{j\pi/2}e^{j2\pi})^{1/2} = e^{j\pi/4}e^{j\pi} = -e^{j\pi/4}$
 $e_{quals - 1}$
 $j^{1/2} = -e^{j\pi/4} = (-\sqrt{\frac{2}{2}} - j\sqrt{\frac{1}{2}})^{1/2} = 2$ SOLUTIONS

McClellan, Schafer and Yoder, Signal Processing First, ISBN 0-13-065562-7. Pearson Prentice Hall, Inc. Upper Saddle River, NJ 07458. © 2003

PROBLEM A.4:

(a)
$$3e^{j^{2\pi/3}} = -\frac{3}{2} + j^{3\sqrt{3}} ADD$$

 $-4e^{j^{\pi/6}} = -4\frac{\sqrt{3}}{2} + j^{2} ADD$
 $ADD \Rightarrow -4.964 + j^{4.598}$
 $ANS = 6.766 e^{j^{0.762\pi}}$ (ANGLE = 137.2° or 2.394 rads)

(b)
$$\sqrt{2} - j^2 = 2.449 e^{-j^{0.304\pi}}$$
 (ANGLE = -54.74° or -0.955 rads)
 $(\sqrt{2} - j^2)^8 = (2.449)^8 e^{-j^8(0.304)\pi}$
 $= 1296 e^{-j^{0.433\pi}}$ (ANGLE = -77.88° or -1.36 rads)

(c)
$$(\sqrt{2}-j^2)^{-1} = \frac{1}{2.449} e^{+j^0.304\pi} = 0.4082 e^{+j^0.304\pi}$$

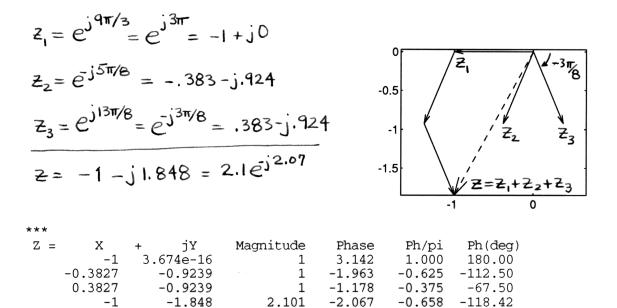
(d)
$$(\sqrt{2}-j^2)^{1/2} = (2.449 e^{-j^0.304\pi} e^{j^2\pi l})^{1/2}$$

= $1.565 e^{j^0.152\pi} e^{j\pi l}$ (l= integer)

There are two answers:
1.565
$$e^{j0.152\pi}$$
 and 1.565 $e^{j0.848\pi}$
(e) $Jm\{je^{-j\pi/3}\} = Jm\{e^{j\pi/2}e^{-j\pi/3}\}$
 $= Jm\{e^{j\pi/6}\}$
 $= sin(\pi/6) = 1/2$

McClellan, Schafer and Yoder, Signal Processing First, ISBN 0-13-065562-7. Pearson Prentice Hall, Inc. Upper Saddle River, NJ 07458. © 2003

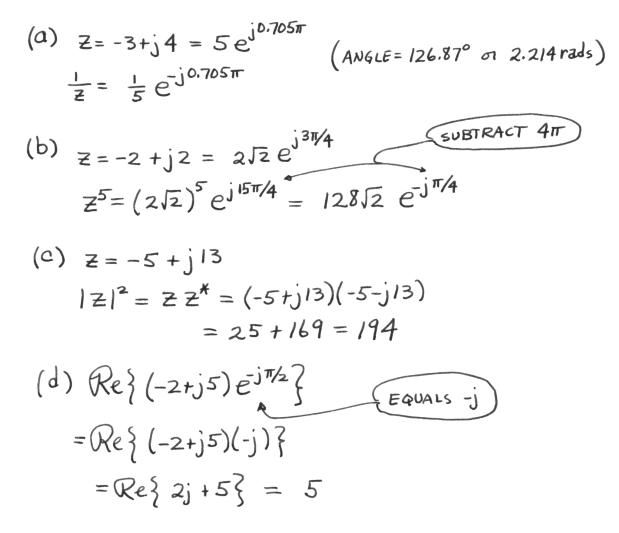
PROBLEM A.5:


(a)
$$Z_{1}^{*} = (-4+j3)^{*} = -4-j3$$

 $= 5e^{j^{0.795\pi}} = 5e^{-j^{2.50}}$
(b) $Z_{2}^{2} = (1-j)^{2} = 1-2j+(-j)^{2} = 1-2j-1=0-2j=-2j$
 $= (\sqrt{2}e^{-j\pi/4})^{2} = 2e^{-j\pi/2} = -j2$
(c) $Z_{1} + Z_{2}^{*} = -4+j3+(1-j)^{*} = -4+j3+1+j=-3+j4$
in polen: $5e^{j^{0.705\pi}}$ (ANGLE=126.87°=2.214 rads)
(d) $jZ_{2} = j(1-j) = j-j(j) = j+1=1+j$
 $= e^{j\pi/2}(\sqrt{2}e^{-j\pi/4}) = \sqrt{2}e^{ij\pi/4}$
(e) $Z_{1}^{-1} = \frac{1}{/Z_{1}} = \frac{1}{/(-4+j3)} = (-4-j3)/(4^{2}+3^{2}) = \frac{1}{25}(-4-j3)$
Use pont(a) $Z_{1}^{-1} = \frac{1}{5}e^{-j^{0.795\pi}}$ (-143.13°=-2.50rads)
(f) $Z_{1}/Z_{2} = Z_{1}Z_{2}^{*}/1Z_{2}|^{2} = (-4+j3)(1+j) = -4-3+j3-j4$
 $= -\frac{7}{2}-j\frac{1}{2} = \frac{1}{2}\sqrt{50}e^{-j^{0.795\pi}}$ (ANGLE=-171.8°=-3 rads)
(g) $e^{Z_{2}} = e^{1-j} = ee^{j} = e(\cos(i)-j\sin(i)) = 1.469-j2.287$
This is polen form
Mag = e angle=-1 rad = -57.3° = -0.318\pi rads
(f) $Z_{1}Z_{1}^{*} = (-4+j3)(-4+j3)^{*} = (-4+j3)(-4-j3)$
 $= (-4)^{2} + 3^{2} = 16+9=25$
(i) $Z_{1}Z_{2} = (-4+j3)(1-j) = -4+j3+j4+3 = -1+j7$
(polen) $= \sqrt{50}e^{j^{0.545\pi}} = 7.07e^{j1.713}$ (98.13°)

McClellan, Schafer and Yoder, Signal Processing First, ISBN 0-13-065562-7. Pearson Prentice Hall, Inc. Upper Saddle River, NJ 07458. © 2003

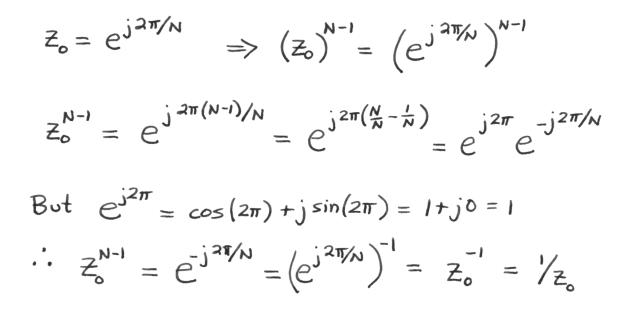
PROBLEM A.6:


Simplify the following complex-valued sum:

 $z = e^{j9\pi/3} + e^{-j5\pi/8} + e^{j13\pi/8}$

McClellan, Schafer and Yoder, Signal Processing First, ISBN 0-13-065562-7. Pearson Prentice Hall, Inc. Upper Saddle River, NJ 07458. © 2003

PROBLEM A.7:


McClellan, Schafer and Yoder, Signal Processing First, ISBN 0-13-065562-7. Pearson Prentice Hall, Inc. Upper Saddle River, NJ 07458. © 2003

PROBLEM A.8:

Solve the following equation for z: $Z^{4} = j = e^{j\pi/2} = e^{j\pi/2}e^{j^{2}}$ $Z = (e^{j\pi/2}e^{j^{2}\pi/2})^{1/4} j l = l^{2}$ $Z = \{e^{j\pi/8}, e^{j^{5}\pi/8}, e^{j^{9}}\}$	0,1,2,3	0.5	0 1
Z = X + jY Magn 0.9239 0.3827 -0.3827 0.9239 -0.9239 -0.3827 0.3827 -0.9239	hitude Phase 1 0.393 1 1.963 1 -2.749 1 -1.178	0.125 0.625 -0.875	Ph(deg) 22.50 112.50 -157.50 -67.50

McClellan, Schafer and Yoder, Signal Processing First, ISBN 0-13-065562-7. Pearson Prentice Hall, Inc. Upper Saddle River, NJ 07458. © 2003

PROBLEM A.9:

McClellan, Schafer and Yoder, Signal Processing First, ISBN 0-13-065562-7. Pearson Prentice Hall, Inc. Upper Saddle River, NJ 07458. © 2003

$$-j = 1e^{j\pi/2}$$
But we can also multiply by $e^{j2\pi l}$ with $l = integer$

$$-j = 1e^{-j\pi/2}e^{j2\pi l}$$

$$(-j)^{1/2} = (1e^{j\pi/2}e^{j2\pi l})^{1/2} = 1e^{-j\pi/4}e^{j\pi l}$$
When $l = integer$, $e^{j\pi l}$ is either

$$\begin{cases} e^{j\pi l} = 1 & \text{when } l \text{ is even.} \\ e^{j\pi l} = e^{j\pi} = -1 & \text{when } l \text{ is odd.} \end{cases}$$
Thus

$$(-j)^{1/2} = \begin{cases} e^{-j\pi/4} & \text{for } l \text{ even} \\ e^{-j\pi/4}e^{j\pi} = e^{j3\pi/4} & \text{when } l \text{ is odd} \end{cases}$$

$$= e^{j\pi/4}e^{j\pi/4}e^{j\pi} = e^{j\pi/4}e^{$$

McClellan, Schafer and Yoder, Signal Processing First, ISBN 0-13-065562-7. Pearson Prentice Hall, Inc. Upper Saddle River, NJ 07458. © 2003