
COT 4600 Operating Systems Fall 2009

Dan C. Marinescu
Office: HEC 439 B
Office hours: Tu-Th 3:00-4:00 PM

22222

Lecture 23
Attention: project phase 4 – due Tuesday November 24

Final exam – Thursday December 10 4-6:50 PM
Last time:

Performance Metrics (Chapter 5)
Random variables
Elements of queuing theory

Today:
Methods to diminish the effect of bottlenecks: batching, dallying, speculation
I/O systems; the I/O bottleneck
Multi-level memories
Memory characterization
Multilevel memories management using virtual memory
Adding multi-level memory management to virtual memory

Next Time:
Scheduling

Methods to diminish the effect of bottlenecks

Batching perform several requests as a group to avoid the setup
overhead of doing one at a time

f: fixed delay
v: variable delay
n: the number of items
n (f + v) versus f+nv

Dallying delay a request on the chance that it will not be needed
or that one could perform batching.
Speculation perform an operation in advance of receiving the
request.

speculative execution of branch instructions
speculative page fetching rather than on demand

All increase complexity due to concurrency.

The I/O bottleneck
An illustration of the principle of incommensurate scaling CPU and memory
speed increase at a faster rate than those of mechanical I/O devices limited by
the laws of Physics.
Example: hard drives

The average seek time (AST): AST = 8 msec
average rotation latency (ARL): rotation speed: 7200 rotation/minute 120 rotations
/second (8.33 msec/rotation) ARL =4.17 msec
A typical 400 Gbyte disk

16,383 cylinders 24 Mbyte/cylinder
8 two-sided platters 16 tracks/cylinder 24/16 MBytes/track 1.5 Mbyte/track

The maximum rate transfer rate of the disk drive is:
120 revolutions/sec x 1.5 Mbyte/track=180 Mbyte/sec

The bus transfer rates (BTR):
ATA3 bus 3 Gbytes/sec
IDE bus 66 Mbyte/sec. This is the bottleneck!!

The average time to read a 4 Kbyte block:
AST+ARL+4 /180 = 8 + 4.17 + 0.02 = 12.19 msec

The throughput: 328 Kbytes/sec.

Lecture 23 5

I/O bottleneck
If the application consists of a loop: (read a block of data, compute for 1 msec,
write back) and if

the block are stored sequentially on the disk thus we can read a full track at once (speculative
execution of the I/O)
we have a write-though buffer so that we can write a full track at one (batching)

then the execution time can be considerably reduced.
The time per iteration: read time + compute time + write time
Initially: 12.19 + 1 + 12.19 = 25.38 msec
With speculative reading of an entire track and overlap of reading and writing

Read an entire track of 1.5 Mbyte reads the data for 384=1,500/4 iterations
The time for 384 iterations:
Fixed delay: average seek time + 1 rotational delay: 8 + 8.33 msec= 16.33 msec
Variable delay: 384(compute time + data transfer time)= 384(1+12.19)= 5065 msec
Total time: 16.33 +5,065= 5,081 msec

Lecture 23 6

Lecture 23 7

Disk writing strategies

Keep in mind that buffering data before writing to the disk has implications;
if the system fails then the data is lost.
Strategies:

Write-through write to the disk before the write system call returns to the user
application
User-controlled write through a force call.
At the time the file is closed
After a predefined number of write calls or after a pre-defined time.

Lecture 23 8

Communication among asynchronous sub-systems:
polling versus interrupts

Polling periodically checking the status of an I/O device
Interrupt deliver data or status information when status information
immediately .
Intel Pentium Vector Table

9

Interrupts: used for I/O and for exceptions

CPU Interrupt-request line triggered by I/O device
Interrupt handler receives interrupts
To mask an interrupt ignore or delay some interrupts
Interrupt vector to dispatch interrupt to correct handler

Based on priority
Some non-maskable

10

11

DMA Bypasses CPU to transfer data directly between I/O device and
memory; it allows subsystems within the computer to access
system memory for reading and/or writing independently of CPU:

disk controller,
graphics cards,
network cards,
sound cards, GPUs (graphics processors),
also used for intra-chip data transfer in multi-core processors,.

Avoids programmed I/O for large data movement
Requires DMA controller

12

Device drivers and I/O system calls

Multitude of I/O devices
Character-stream or block
Sequential or random-access
Sharable or dedicated
Speed of operation
Read-write, read only, or write
only

Device-driver layer hides
differences among I/O
controllers from kernel:
I/O system calls encapsulate
device behaviors in generic
classes

13

Block and Character Devices

Block devices (e.g., disk drives, tapes)
Commands e.g., read, write, seek
Raw I/O or file-system access
Memory-mapped file access possible

Character devices (e.g., keyboards, mice, serial ports)
Commands e.g., get, put
Libraries allow line editing

14

Network Devices and Timers

Network devices
Own interface different from bloc or character devices
Unix and Windows NT/9x/2000 include socket interface

Separates network protocol from network operation
Includes select functionality

Approaches vary widely (pipes, FIFOs, streams, queues, mailboxes)

Timers
Provide current time, elapsed time, timer
Programmable interval timer for timings, periodic interrupts
ioctl (on UNIX) covers odd aspects of I/O such as clocks and timers

15

Blocking and non-blocking I/O

Blocking process suspended until I/O completed
Easy to use and understand
Insufficient for some needs

Non-blocking I/O call returns control to the process immediately
User interface, data copy (buffered I/O)
Implemented via multi-threading
Returns quickly with count of bytes read or written

Asynchronous process runs while I/O executes
I/O subsystem signals process when I/O completed

16

Synchronous Asynchronous

17

Kernel I/O Subsystem

Scheduling
Some I/O request ordering using per-device queue
Some OSs try fairness

Buffering – store data in memory while transferring to I/O device.
To cope with device speed mismatch or transfer size mismatch
To maintain “copy semantics”

18

19

Kernel I/O Subsystem and Error Handling

Caching fast memory holding copy of data
Always just a copy
Key to performance

Spooling holds output for a device that can serve only one request at a
time (e.g., printer).
Device reservation provides exclusive access to a device

System calls for allocation and de-allocation
Possibility of deadlock

Error handling:
OS can recover from disk read, device unavailable, transient write failures
When I/O request fails error code.
System error logs hold problem reports

20

I/O Protection

I/O instructions are priviledged
Users make system calls

21

Kernel Data Structures for I/O handling
Kernel keeps state info for I/O components, including open file tables, network
connections, device control blocs

Complex data structures to track buffers, memory allocation, “dirty” blocks
Some use object-oriented methods and message passing to implement I/O

22

23

Hardware Operations

Operation for reading a file:
Determine device holding file
Translate name to device representation
Physically read data from disk into buffer
Make data available to the process
Return control to process

24

STREAMS in Unix

STREAM a full-duplex communication channel between a user-level
process and a device in Unix System V and beyond
A STREAM consists of:

- STREAM head interfaces with the user process
- driver end interfaces with the device
- zero or more STREAM modules between them.

Each module contains a read queue and a write queue
Message passing is used to communicate between queues

25

26

I/O major factor in system performance:

Execute
device driver,
kernel I/O code
Context switches

Data copying
Network traffic stressful

27

Improving Performance

Reduce number of context switches
Reduce data copying
Reduce interrupts by using large transfers, smart controllers, polling
Use DMA
Balance CPU, memory, bus, and I/O performance for highest throughput

28

Memory characterization
Capacity
Latency of random access memory:

Access time time the data is available
Cycle time (> access time) time when the next READ operation can be carried
out (READ can be destructive)

Cost:
for random access memory cents/Mbyte
For disk storage: dollars/Gbyte

Cell size the number of bits transferred in a single READ or WRITE
operation
Throughput Gbits/sec

Lecture 23 29

Lecture 23 30

Multi-level memories

In the following hierarchy the amount of storage and the access time
increase at the same time

CPU registers
L1 cache
L2 cache
Main memory
Magnetic disk
Mass storage systems
Remote storage

Memory management schemes where the data is placed through this
hierarchy

Manual left to the user
Automatic based on memory virtualization

More effective
Easier to use

Lecture 23 31

Other forms of memory virtualization

Memory-mapped files in UNIX mmap
Copy on write when several threads use the same data map the page
holding the data and store the data only once in memory. This works as
long all the threads only READ the data. If one of the threads carries out a
WRITE then the virtual memory handling should generate an exception and
data pages to be remapped so that each thread gets its only copy of the
page.
On-demand zero filled pages Instead of allocating zero-filled pages on
RAM or on the disk the VM manager maps these pages without READ or
WRITE permissions. When a thread attempts to actually READ or WRITE to
such pages then an exception is generated and the VM manager allocates
the page dynamically.
Virtual-shared memory Several threads on multiple systems share the
same address space. When a thread references a page that is not in its
local memory the local VM manager fetches the page over the network and
the remote VM manager un-maps the page.

Lecture 23 32

Multi-level memory management and virtual memory

Two level memory system: RAM + disk
READ and WRITE from RAM controlled by the VM manager
GET and PUT from disk controlled by a multi-level memory manager

Old design philosophy: integrate the two to reduce the instruction count
New approach – modular organization

Implement the VM manager (VMM) in hardware
Implement the multi-level memory manager (MLMM) in the kernel in software. It
transfers pages back and forth between RAM and the disk

How it works:
VM attempts to translate the virtual memory address to a physical memory address
If the page is not in main memory VM generates a page-fault exception.
The exception handler uses a SEND to send to an MLMM port the page number
The SEND invokes ADVANCE which wakes up a thread of MLMM
The MMLM invokes AWAIT on behalf of the thread interrupted due to the page fault.
The AWAIT releases the processor to the SCHEDULER thread.

The new approach leads to implicit I/O

Lecture 23 33

Lecture 23 34

Lecture 23 35

	COT 4600 Operating Systems Fall 2009
	Lecture 23
	Methods to diminish the effect of bottlenecks
	The I/O bottleneck
	I/O bottleneck
	Disk writing strategies
	Communication among asynchronous sub-systems: polling versus interrupts
	Interrupts: used for I/O and for exceptions
	Device drivers and I/O system calls
	Block and Character Devices
	Network Devices and Timers
	Blocking and non-blocking I/O
	Kernel I/O Subsystem
	Kernel I/O Subsystem and Error Handling
	I/O Protection
	Kernel Data Structures for I/O handling
	Hardware Operations
	STREAMS in Unix
	I/O major factor in system performance:
	Improving Performance
	Memory characterization
	Multi-level memories
	Other forms of memory virtualization
	Multi-level memory management and virtual memory

