Calculus III Advanced (Course) (11.1) (Homework)

From University
Jump to: navigation, search

Section 11.1 Homework

From Calculus 10e by Larson and Edwards, p. 755. Exercises 8, 28, 36, 50, 84.

Exercise 11.1.8 Show that vectors u and v are equivalent

u (-4,-1), (11,-4)
v (10,13), (25,10)
Solution Since vectors are line segments the length, magnitude, and slope, direction must match.

Distance \(=\sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}} \)
u \(= \sqrt{(-4-11)^{2}+(-1-(-4))^{2}} \)
\(= \sqrt{(-15)^{2}+(3)^{2}} = \sqrt{ 234 } \)
v \(= \sqrt{(10-25)^{2}+(13-10)^{2}} \)
\(= \sqrt{(-15)^{2}+(3)^{2}} = \sqrt{ 234 } \)
Slope $$= \frac{x_{2}-x_{1}}{y_{2}-y_{1}} $$
u $$= \frac{-1-(-4)}{-4-11} $$
$$ = \frac{3}{-15} = - \frac{1}{5} $$
v $$= \frac{13-10}{10-25} $$
$$ = \frac{3}{-15} = - \frac{1}{5} $$

The vectors u and v are equivalent because they have the same length and slope.

Exercise 11.1.28 Find the Terminal Point

Find a terminal point, given \( \textbf{v}= \left \langle 4,-9 \right \rangle \); Initial point: (5,3).
The terminal point is:

\( (4 + 5, -9 + 3) = (9,-6) \)

Exercise 11.1.36 Find the unit vector in v's direction and verify that it has length 1

Let \( \textbf{v}= \left \langle -5,15 \right \rangle \).

$$ \frac{\textbf{v}}{\left \| \textbf{v} \right \|} $$ $$= \frac{ \left \langle -5,15 \right \rangle }{\sqrt{(-5)^{2}+(15)^{2}}}$$
$$=\frac{1}{\sqrt{250}}\left \langle -5,15 \right \rangle $$
$$= \left \langle \frac{-5}{\sqrt{250}},\frac{15}{\sqrt{250}} \right \rangle$$
Substitute this into the proof for Theorem 11.1.2 yields.
$$= \sqrt{ \left(\frac{-5}{\sqrt{250}}\right)^{2} + \left(\frac{15}{\sqrt{250}}\right)^{2} }$$
$$= \sqrt{ \frac{25}{250}+\frac{225}{250}} $$
$$= \sqrt{\frac{250}{250}} = 1$$

Exercise 11.1.50 Find the component form for v, given its magnitude and angle the positive \(x\)-axis.

Let \(\left \| \textbf{v} \right \| = 3\) and \(\theta = 120^{\circ} \).

Because the angle between v and the positive \(x\)-axis is \(\theta = 2\pi /3 \) the vector can be described as

\(\textbf{v} \) \(=\left \| \textbf{v} \right \|\cos \theta\:\textbf{i} + \left \| \textbf{v} \right \| \sin \theta \:\textbf{j}\).
$$=3 \cos \frac{2\pi}{3}\textbf{i} + 3 \sin \frac{2\pi}{3}\textbf{j} $$
$$= -\frac{3}{2}\textbf{i} + \frac{3\sqrt{3}}{2}\textbf{j} $$

Exercise 11.1.84 Navigation

Figure 11.1

Figure 11.2

A plane flies at a 400 mph constant ground speed due east, 90°. A 50-mile-per-hour wind hits the plane from the northwest, 135°.
Find the airspeed and compass direction that will allow the plane to maintain its ground speed and eastward direction.

Let \( \textbf{v}_{1}\) be the airplane's vector. Let \( \textbf{v}_{2}\) be the wind's vector. Let \( \textbf{v}_{3}\) be the combined vectors that represent the airplane's new course. Let \( \textbf{v}_{4}\) be the airplane's corrected course.

\( \textbf{v}_{1}\) \(= 400 \cos( 90^{\circ} ), 400 \sin(90^{\circ})\)
\(= 400 * 1 , 400 * 0\)
\(= (400, 0)\)
\( \textbf{v}_{2}\) \(= 50 \cos( 135^{\circ} ), 50 \sin(135^{\circ})\)
$$= 50 \frac{\sqrt{2}}{2} , 50 -\frac{\sqrt{2}}{2}$$
\(= 25 \sqrt{2} , 25 -\sqrt{2}\)
\(= 35.335, -35.335\)
\( \textbf{v}_{3}\) \(= 400 + 35.335, 0^{\circ} + (-35.335^{\circ})\)
\(= 435.335 , -35.335^{\circ}\)
The airplane's new course is 125.335°, at \(\approx \) 435.335 mph, as shown in Figure 11.1. Remember, north is 0°, east is 90°, so the new course is 90° + 35.355° or 125.335°.
Now \( \textbf{v}_{3} - \textbf{v}_{1} \) to get the corrected course, \( \textbf{v}_{4}\)
\( \textbf{v}_{4}\) \(= 435.335 - 400 , -35.335^{\circ} - 90^{\circ}\)
\(= 35.355, -125.355^{\circ} \)

As shown in Figure 11.2.

Internal Links

Parent Article: Calculus III Advanced (Course)