Calculus III Advanced (Course) (12.3) (Homework)

From University
Jump to: navigation, search

Section 12.3 Homework

From Calculus 10e by Larson and Edwards, p. 838. Exercises 18, 22, 26, 36.

Exercise 12.3.18 Finding Velocity and Acceleration Vectors

The position vector \( \textbf{r} \) describes the path of an object moving in three-dimensions.

  1. Find the velocity, speed, and acceleration vectors for the object.
  2. Evaluate the velocity and acceleration vectors for the object at the given value \(t\).
Position Vector Time
$$ \textbf{r} = \left \langle \ln t, \frac{1}{t}, t^{4} \right \rangle $$ \(t=2 \)

Soluton Write out the position vector in component form and find the velocity, speed, and acceleration vectors.

\( \textbf{r}(t) \) $$= \ln t\textbf{i} + \frac{1}{t}\textbf{j} + t^{4}\textbf{k} \:\:\:\: $$ Component version
\( \textbf{v}(t) \) $$ =\textbf{r}^{\prime}(t) = \frac{1}{t}\textbf{i} - \frac{1}{t^{2}}\textbf{j} + 4t^{3}\textbf{k} \:\:\:\: $$ Velocity vector
\( \textbf{a}(t) \) $$ =\textbf{r}^{\prime \prime}(t) = - \frac{1}{t^{2}}\textbf{i} + \frac{2}{t^{3}}\textbf{j} + 12t^{2}\textbf{k} \:\:\:\: $$ Acceleration vector
\( \| \textbf{v}(t) \| \) $$= \| \textbf{r}^{\prime}(t) \| = \sqrt{ \left(\frac{1}{t}\right)^{2}\textbf{i} - \left( \frac{1}{t^{2}} \right)^{2}\textbf{j} + \left( 4t^{3} \right)^{2}\textbf{k} } \:\:\:\: $$ Speed vector

Evaluate the velocity and acceleration vectors for the object when \(t=2\).

Velocity $$= \frac{1}{2} - \frac{1}{(2)^{2}} + 4(2)^{3} = 32 \frac{1}{4}$$
Acceleration $$= - \frac{1}{(2)^{2}} + \frac{2}{(2)^{3}} + 12(2)^{2} = 48 \frac{1}{2} $$

Exercise 12.3.22 Finding a Position Vector by Integration

Use the given acceleration vector to find the velocity and position vectors. Then find the position at time \(t=2\).

\( \textbf{a}(t) \) \(= -32 \textbf{k} \)
\( \textbf{v}(0) \) \(= 3\textbf{i} -2 \textbf{j} + \textbf{k} \)
\( \textbf{r}(0) \) \(= 5 \textbf{j} + 2\textbf{k} \)

Solution First find the velocity vector.

\( \textbf{v}(t) \) $$= \int \textbf{a}(t)\:dt \:\:\:\: \color{red}{\text{ Velocity vector }}$$
$$= \int ( -32 \textbf{k} ) \:dt$$
\(= -32t\textbf{k} + \textbf{C} \)

where \( \textbf{C}= C_{1}\textbf{i} + C_{2}\textbf{j} + C_{3}\textbf{k} \). Letting \(t=0\) and applying the initial condition \( \textbf{v}(0) = 3\textbf{i} -2 \textbf{j} + \textbf{k} \) produces

\( \textbf{v}(0) = C_{1}\textbf{i} + C_{2}\textbf{j} + C_{3}\textbf{k} = 3\textbf{i} -2 \textbf{j} + \textbf{k} \rightarrow C_{1} = 3, \: C_{2} =-2,\: C_{3} =1. \)

The velocity at any time \(t\) is

\( \textbf{v}(t) = 3\textbf{i} -2 \textbf{j} - 32t \textbf{k} \:\:\:\: \)Velocity vector

Integrate the velocity vector to find the position vector.

\( \textbf{r}(t) \) $$= \int \textbf{v}(t)\:dt \:\:\:\: $$ Velocity vector
$$= \int ( 3\textbf{i} -2 \textbf{j} - 32t \textbf{k} ) \:dt$$
$$= 3t\textbf{i} -2t \textbf{j} - 16t^{2} \textbf{k} + \textbf{C} $$

where \( \textbf{C}= C_{4}\textbf{i} + C_{5}\textbf{j} + C_{6}\textbf{k} \). Letting \(t=0\) and applying the initial condition \( \textbf{r}(0) = \textbf{j} + 2\textbf{k} \) produces

\( \textbf{r}(0) = C_{4}\textbf{i} + C_{5}\textbf{j} + C_{6}\textbf{k} = 5 \textbf{j} + 2\textbf{k} \rightarrow C_{4} = 0,\: C_{5} = 5,\: C_{6} = 2. \)

The position vector is.

\( \textbf{r}(t) = 3t\textbf{i} +(5-2t) \textbf{j} + (2- 16t^{2}) \textbf{k} \)

The object's location at \(t=2\) is given by

\( \textbf{r}(2) \) \(= 3(2)\textbf{i} +(5-2(2)) \textbf{j} + (2- 16(2)^{2}) \textbf{k} \)
\(= 6\textbf{i} + \textbf{j} -62 \textbf{k} \)

Exercise 12.3.26 Projectile Motion Find Maximum Height

Use the model for projectile motion, assuming there is no air resistance.

Determine the maximum height and range for a projectile fired at a height 3 feet above the ground with an initial velocity at 900 feet per second and at a 45° angle above the horizontal.
Solution From the question

\( h=3, \: v_{0}=900 \text{, and } \theta = 45^{\circ}. \)

Using \(g=32\) feet per second per second produces

\( \textbf{r}(t) \) $$= \left( 900 \cos \frac{\pi}{4} \right)t\textbf{i} + \left[3 + \left( 900 \sin \frac{\pi}{4} \right)t - 16t^{2} \right]\textbf{j}$$
\(= \left( 450 \sqrt{2}t \right)\textbf{i} + \left(3 + 450 \sqrt{2}t - 16t^{2} \right)\textbf{j} \).

The velocity vector is

\( \textbf{v}(t) = \textbf{r}^{\prime}(t) = 450 \sqrt{2}\textbf{i} +(450 \sqrt{2}- 32t)\textbf{j}. \)

The maximum height occurs when

\( y^{\prime}(t)= 450 \sqrt{2}- 32t \)

is equal to 0, which implies that

$$ t = \frac{225 \sqrt{2}}{16} \approx 19.887378 \text{ seconds. } $$

The maximum height reached by the projectile is

\(y\) $$= 3 + 450 \sqrt{2} \left( \frac{225 \sqrt{2}}{16} \right) - 16 \left( \frac{225 \sqrt{2}}{16} \right)^{2} $$
$$ = \frac{50649}{8} \approx 6331.125 \text{ feet } $$

The maximum range is given by

$$ \frac{(v_{0})^{2} \cos \theta}{g} \left( \sin \theta + \sqrt{ \sin^{2} \theta + \frac{2gh}{(v_{0})^{2}}} \right) $$

where \(v_{0} = 900 \), \(g=32\) feet per second per second, \( \theta = 45^{\circ} \), and \(h=3\).

$$ \frac{(900)^{2} \frac{ \sqrt{2}}{2} }{32} \left( \frac{ \sqrt{2}}{2} + \sqrt{ \left( \frac{ \sqrt{2}}{2} \right)^{2}+ \frac{2(32)(3)}{(900)^{2}}} \right) \approx 25315.499645 \text{ feet}$$

Exercise 12.3.36 Projectile Motion Find Minimum Initial Velocity

Use the model for projectile motion, assuming there is no air resistance.

A projectile is fired from ground level at a 12° angle with the horizontal. The projectile is to have a 200 foot range. Find the minimum initial velocity necessary.
Solution From the question

\(h=0 \) and \( \theta = 12^{\circ} \text{ or } \frac{\pi}{15} \)

The maximum range is given by

$$ \frac{ (v_{0})^{2} \cos \theta}{g} \left( \sin \theta + \sqrt{ \sin^{2} \theta + \frac{2gh}{ (v_{0})^{2}}} \right) $$

where \(g=32\) feet per second per second, \( \theta = 12^{\circ} \text{ or } \frac{\pi}{15} \), and \(h=0\). Set equal to 200 and solve for \(v_{0} \).

\( 200 \) $$= \frac{ (v_{0})^{2} \cos \frac{\pi}{15} }{32} \left( \sin \frac{\pi}{15} + \sqrt{ \sin^{2} \frac{\pi}{15} } \right) $$
\( 6400 \) $$= (v_{0})^{2} \cos \frac{\pi}{15} \left( \sin \frac{\pi}{15} + \sqrt{ \sin^{2} \frac{\pi}{15} } \right) $$
\( 6400 \) \(= (v_{0})^{2} (0.40674)\)
\( 2603.136 \) \(= (v_{0})^{2}\)
\( 51.02 \) \(= v_{0}\)

The initial velocity is 51.02 feet per second per second.


Internal Links

Parent Article: Calculus III Advanced (Course)