Calculus III Advanced (Course) (13.5) (Homework)

From University
Jump to: navigation, search

Section 13.5 Homework

From Calculus 10e by Larson and Edwards, p. 913. Exercises 12, 16, 20, 21.

Exercise 13.5.12 Projectile Motion

The parametric equations for the paths of two projectiles are given. At what rate is the distance between the two objects changing at the given value for \(t\)?

\(x_{1}\) \(=48 \sqrt{2}t, \:\:\:\: \) \(y_{1} \) \( = 48 \sqrt{2}t -16t^{2} \:\:\:\: \) First Object
\(x_{2}\) \(=48 \sqrt{3} t, \) \(y_{2} \) \( = 48t-16t^{2} \) Second Object
\(t\) \(= 1 \)

Solution The change rate is the \(dt\) at time \(t=1\) set equal to the distance formula. Therefore,

\(dt \) \(= \sqrt{ (x_{1}(t)-x_{2}(t))^{2} + (y_{1}(t)-y_{2}(t))^{2}} \)
\(dt^{2} \) \(= (x_{1}(t)-x_{2}(t))^{2} + (y_{1}(t)-y_{2}(t))^{2} \)

Take the derivative on both sides with respect to \(t\) and use the chain rule to produce

\( 2dd^{\prime} = 2(x_{1}(t)-x_{2}(t))(x_{1}^{\prime}(t)-x_{2}^{\prime}(t)) + 2(y_{1}(t)-y_{2}(t))(y_{1}^{\prime}(t)-y_{2}^{\prime}(t)) \)
$$ d^{\prime} t = \frac{ (x_{1}(t)-x_{2}(t))(x_{1}^{\prime}(t)-x_{2}^{\prime}(t)) + (y_{1}(t)-y_{2}(t))(y_{1}^{\prime}(t)-y_{2}^{\prime}(t)) }{dt} $$

When \(t=1\)

\(x_{1}(1)\) \(= 48\sqrt{2}, \:\:\:\: \) \(x_{1}^{\prime}(1)\) \(= 48\sqrt{2} , \:\:\:\: \) \(y_{1}(1)\) \(= 48\sqrt{2}-16, \:\:\:\: \) \(y_{1}^{\prime}(1)\) \(= 48\sqrt{2}-32 \)
\(x_{2}(1)\) \(= 48\sqrt{3}, \:\:\:\: \) \(x_{2}^{\prime}(1)\) \(= 48\sqrt{3}, \:\:\:\: \) \(y_{2}(1)\) \(= 32, \:\:\:\: \) \(y_{2}^{\prime}(1)\) \(= 16 \)
\(d(1) = 48 \sqrt{ (\sqrt{2} -\sqrt{3})^{2} + (\sqrt{2}-1)^{2} } \)

Substitute the data into \(d^{\prime}(t) \) produces

\(d^{\prime}(1) \) $$= \frac{ 48^{2} (\sqrt{2} -\sqrt{3})^{2} + 48^{2}(\sqrt{2}-1)^{2}}{48 \sqrt{ (\sqrt{2} -\sqrt{3})^{2} + (\sqrt{2}-1)^{2} }}$$
\(= 48 \sqrt{ (\sqrt{2} -\sqrt{3})^{2} + (\sqrt{2}-1)^{2}} \)
\(= 48 \sqrt{ 8- 2\sqrt{6} - 2\sqrt{2} } \)

Exercise 13.5.16 Finding Partial Derivatives

Find \(\partial w/\partial s\) and \(\partial w/\partial t\) using the appropriate Chain Rule. Evaluate each partial derivative at the given values for \(s\) and \(t\).

Function Values
\( w=x^{2}-y^{2} \) \(s=3, \: t = \frac{\pi}{4} \)
\( x=s \cos t, \: y = s \sin t \:\:\:\: \)

Solution

\(x(3,\pi/4) \) \(= 3 \cos(\pi/4) = 3 / \sqrt{2} \)
\(y( 3, \pi/4 ) \) \(= 3 \sin (\pi/4) = 3 / \sqrt{2} \)
$$ \frac{\partial w}{ \partial s} = \frac{\partial w}{ \partial x} \frac{\partial x}{ \partial s} + \frac{\partial w}{ \partial y}\frac{\partial y}{ \partial s} = 2x \cdot \cos t -2y \cdot \sin t $$
$$ = 2 \cdot 3 / \sqrt{2} \cdot 3 / \sqrt{2} - 2 \cdot 3 / \sqrt{2} \cdot 3 / \sqrt{2} = 0 $$
$$ \frac{\partial w}{ \partial t} = \frac{\partial w}{ \partial x} \frac{\partial x}{ \partial t} + \frac{\partial w}{ \partial y}\frac{\partial y}{ \partial t} = 2x \cdot (-s \sin t ) -2y \cdot ( s \cos t )$$
$$ = - 2 \cdot 3 / \sqrt{2} \cdot 1 / \sqrt{2} - 2 \cdot 3 / \sqrt{2} \cdot 3 / \sqrt{2} = -18 $$

Exercise 13.5.20 Using Different Methods

Find \(\partial w / \partial s \) and \(\partial w / \partial t \) (a) by using the appropriate Chain Rule and (b) by converting w to a function for \(s\) and \(t\) before differentiating.

\(w=x \cos yz, \: x=s^{2}, \: y=t^{2}, \: z=s-2t \)

Solution

$$ \frac{\partial w}{ \partial s} = \frac{\partial w}{ \partial x} \frac{\partial x}{ \partial s} + \frac{\partial w}{ \partial y}\frac{\partial y}{ \partial s} + \frac{\partial w}{ \partial z}\frac{\partial z}{ \partial s} $$
$$ = \cos (yz) \cdot 2s - xz \sin(yz) \cdot 0 - xy \sin(yz) \cdot 1 $$
$$= 2s \cos(t^{2}(s-2t)) - s^{2}t^{2} \sin(t^{2}(s-2t)). $$
$$ \frac{\partial w}{ \partial t} = \frac{\partial w}{ \partial x} \frac{\partial x}{ \partial t} + \frac{\partial w}{ \partial y}\frac{\partial y}{ \partial t} + \frac{\partial w}{ \partial z}\frac{\partial z}{ \partial t} $$
$$ = \cos (yz) \cdot 0 - xz \sin(yz) \cdot 2t - xy \sin(yz) \cdot (-2) $$
$$= -2s^{2}(s-2t)t \sin(t^{2}(s-2t)) + 2s^{2}t^{2} \sin(t^{2}(s-2t)). $$

Exercise 13.5.21 Finding a Derivative Implicitly

Differentiate implicitly to find \(dy / dx \).

\( x^{2}-xy+y^{2}-x+y = 0 \)

Solution The identity defines \(y=y(x)\) implicitly. Differentiate both sides with respect to \(x\).

$$ 2x-y-x \frac{dy}{dx} + 2y\frac{dy}{dx} -1 + \frac{dy}{dx} = 0 \Leftrightarrow (2x-y-1)-(x-2y-1) \frac{dy}{dx}=0 $$

Therefore,

$$ \frac{dy}{dx} = \frac{2x-y-1}{x-2y-1} $$

Internal Links

Parent Article: Calculus III Advanced (Course)